Kusursuz İnşaatın Zaman Çizelgesi



Yumurtanın spermle döllenmesi, hücre zarındaki potansiyel elektriğin değişmesiyle başlar. Sperm hücresi ana rahminde yumurta ile birleşirken, tam o anda yumurtadaki iyon kanalları aktif hale gelir. Yumurta hücresinin zarındaki potansiyel elektriğin değişmesi sonucu, diğer sperm hücreleri içeriye giremezler. Vücudumuzdaki elektriksel denge daha yaratılışın ilk evresi olan döllenme sürecinde de çok büyük önem taşır.

Döllenmeden dokuz ay sonra, beynimizi oluşturacak nöronların çoğu uygun beyin bölgesine geçmek üzere çoğalmıştır. Hedefe vardıklarında, her bir nöron etkili bir şekilde köklerini aşağıya doğru uzatır ve sinirsel bir devre oluşturarak komşu nöronlarla iletişim kurmaya başlar.


Bir insan embriyosunda ilk belirginleşen kısım merkezi sinir sistemidir. Bu kısım daha sonra gelişerek beyni ve omuriliği meydana getirir. Döllenmeden sadece iki buçuk hafta sonra embriyo üzerinde hücrelerin kenardan içeri doğru hareket etmesi ile birlikte belli belirsiz bir çukur oluşur. Üçüncü haftaya gelindiğinde, bu çukur kapanarak sinir sistemine ait silindir bir tüp ortaya çıkarır. Embriyonun uzunluğu ise hala iki milimetreden daha azdır.

Üçüncü ya da dördüncü haftada kalp atmaya başlar, ancak bu beyinden ya da merkezi sinir sisteminden gelen uyarılar aracılığıyla olmaz. İleride kafayı oluşturacak olan, beynin hemen yanındaki bölgeden gelen uyarılar aracılığıyla atmaya başlar..

Otuz beşinci güne gelindiğinde, yetişkin bir insanda bilinçli düşüncenin merkezi kabul edilen beyin kabuğu (korteks) gözle görülebilir bir hal alır. Beyin yavaş yavaş büyümeye başlar; bu, yıllarca devam edecek olan bir sürecin başlangıcıdır. Beynin doğum anındaki kütlesi bir yetişkinin dörtte biri kadardır. Bu büyüklük kuşkusuz son derece hikmetlidir. Bu, bebeğin başının doğum anında geçebileceği büyüklüğün sınırıdır. Doğumdan sonraki altıncı ayda, bebeğin kafatası gerçek boyutunun yarısı kadar, ikinci yılın sonunda ise bir yetişkin kafasının dörtte üçü büyüklükte olur. Dördüncü yılda, insan beyni doğum sırasındakinin dört katı büyüklükte, yani 1.400 cm3 kadardır. Şuursuz hücreler yığınının, annenin vücudundan çıkabilmek için en fazla ne kadar büyümesi gerektiğini bilmesi, bunu kusursuzca ayarlaması elbette ki mümkün değildir. Buradaki şuurlu hareket, hücrelerin Rahman ve Rahim olan Allah'ın ilhamı ile hareket ettiklerinin göstergelerinden sadece biridir.


Sinir sisteminin oluşumu:

5. haftadan itibaren embriyonun üst bölümündeki hücreler, gövdenin orta hattının etrafında kalınlaşmaya başlar. Burada iki katman ve aralarında bir tüp oluşur. Bu dış bölümün, omuriliğin ve sinir liflerinin çıktığı beynin ilk halidir.

Embriyonun anne karnındaki gelişiminde 5. haftadan itibaren oluşan omurilikte, çok süratli bir şekilde saniyede 5.000 tane nöron üretilir.79 Bu bölgede daha sonra beyin oluşacaktır. Doğum anına kadar beyindeki nöronların sayısı yüz milyara ulaşır.80 Beyin hücrelerinin büyük kısmı embriyonun ilk beş ayında oluşur ve her biri doğumdan önce beyinde olmaları gereken yerde konumlarını almış olurlar. Büyük bir hızla oluşan hücreler bir süre sonra merkezi sinir sisteminin uzantılarını oluşturmak üzere, daha uzaklara göç etmeye başlarlar. Elbette ki "göç" eylemi şuursuz bir hücre için olağanüstü bir yetenektir. Bir hücrenin belli bir noktaya ilerleme ihtiyacı hissetmesi, bunun için yönünü belirlemesi, yolunu şaşırmadan bulması, gitmesi gereken yere geldiğinde ilerlemeyi durdurması son derece hayret ve hayranlık verici bir durumdur. Gözü ya da beyni olmayan yağ ve proteinden oluşan bir hücrenin kendi kendine göç etme kararı alması, üstelik bu hareketi için belli bir amaç taşıması mümkün değildir. Bu, Allah'ın üzerimizdeki hakimiyetinin bir göstergesi, ilminin detaylarının sayısız örneğinden yalnızca bir tanesidir.

Her bir nöronun, sinir sistemi içinde kendisi için ayrılmış olan hedef yerini tam olarak bulması şarttır. Bu yüzden genç nöronların yollarını bulabilmeleri için mutlaka bir rehbere ihtiyaçları vardır. Bu rehberler, omuriliğin ve beynin gelişme alanı arasında bir tür kablo şeklinde uzanan özel hücrelerdir. Nöronlar üretildikleri yerden çıkıp bu rehberlere tutunarak göç ederler ve kendileri için ayrılmış olan yerleri anlayarak, oraya yerleşirler. Hemen ardından ise uzantılar meydana getirerek diğer nöronlarla bağlantı kurarlar. Hücrelerin her biri hedefleri olan organa doğru hızla yol almaya başlar. Nöronlara bu seyahatleri boyunca, "gliyal hücre" denilen bir trilyon destek hücresi eşlik eder. Peki ama nöronlar oluşur oluşmaz böyle bir yolculuğa çıkacaklarını nereden bilmektedirler? Bu yolculuk sırasında hedeflerini bulmak için bir rehber kullanmaları gerektiğine ve birbirleriyle ne tür bir iş birliği yapacaklarına nasıl karar vermektedirler? Nöron dediğimiz varlıklar sonuçta gözle görülemeyecek küçüklükte, atomlardan ve moleküllerden oluşan hücrelerdir. Onların böylesine şuurlu bir şekilde yerleşmeleri kendi karar ve iradeleriyle gerçekleşecek bir olay değildir. Bu işlemi yöneten merkez beyin de değildir. Çünkü henüz anne karnındaki embriyonun beyni oluşmamıştır. Buradaki bilinçli davranışlar, şuurlu bir yaratılışı açıkça ispatlamaktadır.


İnsanın iletişimini sağlayan sinir sisteminin merkezindeki beyin bir insanın normal yaşantısına devam edebilmesi için doğduğu andan itibaren kusursuzca çalışır durumda olmalıdır. Bu nedenle yeni doğan bir çocuğun beynindeki nöron sayısı -aradaki bağlantıların çoğu tamamlanmamış olsa da- yetişkin birininki ile aynıdır. Ceninin gelişimi sırasında beyin günde yaklaşık 360 milyon kadar yeni hücre üretir.

Beyindeki hücrelerden bazılarının gliyal hücrelere dönüşmesi de son derece mucizevi bir durumdur. Bu hücreler, beyinde bol miktarda bulunurlar ve sayıca nöronlardan on kat fazladırlar. Gliyal hücrelerin bir türü "makrofaj" olarak bilinen ve beyinde meydana gelen bir hasardan sonra ölü hücre kalıntılarını temizlemekle görevli olan hücrelerdir. Diğer bir gliyal hücre sınıfı ise birçok nöronun etrafında, elektriksel yalıtım işlevini görecek yağlı bir tabaka oluşturur. Yıldızımsı şekli dolayısıyla astrosit diye adlandırılan ve her yerde bulunan bir gliyal hücre türü de nöronları korur. Bunlar, aşırı miktardaki toksik kimyasalları temizlemek için bir tür sünger ya da tampon işlevi görürler. Nöronlar fiilen hasar gördüklerinde, astrositler hasarın onarılmasını sağlayacak maddeleri yüksek düzeyde salgılayabilmek için, iki kat çaba harcayarak boyut ve sayı bakımından büyürler. Her biri birbirinden önemli olan bu görevleri, gözle görülmeyen boyuttaki söz konusu hücreler gerçekleştirir.

Yirminci haftaya gelindiğinde beyin korteksi (dış kısım, kabuk) ile bebeğin vücudu arasında sinirsel bağlantılar oluşur. Bundan sonraki beş hafta içinde de duyu sistemi ve beyin arasındaki bağlantılar tamamlanır.

Doğumdan sonraki ilk aylarda, beyindeki yalıtıcı miyelin maddesinde büyük bir artış görülür. Aksonlar miyelinle yalıtılır yalıtılmaz, elektrik sinyalini çok daha verimli bir şekilde taşımaya başlarlar. Hassas bir hareketi gerçekleştirebilmemiz, ancak beyindeki nöronların olabildiğince verimli çalışmasıyla gerçekleşir. Aksonların miyelinle yalıtılması on beş yaşına ve hatta daha ileri dönemlere kadar hızla devam eder.


Spermle yumurtanın birleşmesinde elektrik yükü büyük önem taşır. Yumurta her zaman için eksi elektrik yüküne sahiptir. Spermler ise artı elektrik yüklüdür. Zıt yükler birbirini çektiği için yumurta da tüm spermleri kendine doğru çeker. Ancak yumurtanın içine girebilen ilk spermle birlikte elektrik yükü anında değişir. Artık yumurta da spermler gibi artı elektrik yüküne sahiptir. Aynı yükler birbirini ittiği için birleşme anından itibaren yumurta tüm spermleri itmeye başlar. Eğer yumurta ve spermlerin elektrik yükleri en baştan zıt değil de eşit olsaydı, o zaman yumurta, spermleri iter ve hiçbir sperm yumurtaya yaklaşamazdı. Görüldüğü gibi, tek bir yumurta ile spermin birleşmesinde dahi olağanüstü bir denge ve hesap bulunmaktadır.

Sperm ve yumurta olarak ifade edilen iki mikroskobik hücrenin birleşiminden böylesine kompleks bir sinir ağı ve kumanda merkezi oluşması bir yaratılış harikasıdır. Hücreler oluşur oluşmaz bilmedikleri bir yere doğru sadece kendilerine ilham edilen bilgiler doğrultusunda hareket ederler. Açıktır ki, beynin ve sinir sisteminin oluşumu sırasında yaşanan hiçbir olayın tesadüflerle meydana gelmesi mümkün değildir. Çünkü tek bir aşamadaki aksaklık, zincirleme olarak tüm sistemi bozacaktır. Nöronların meydana gelmesi ve bir sinir ağına dönüşmeleri beynin ve ona bağlı çalışan sinir sisteminin oluşum aşamalarından yalnızca bir tanesidir. Değil evrimcilerin iddia ettiği gibi beynin tamamının tesadüfen oluşması, tek bir nöronun bile rastlantılarla meydana gelmesi mümkün değildir. Oxford Üniversitesi Farmakoloji profesörü Susan Greenfield insanın yaratılışındaki bu olağanüstülüğü şöyle dile getirmektedir:

Döllenmiş tek yumurtanın bilinçli olmadığı açıktır, o halde bilinç aniden ne zaman ortaya çıkar? Ve bir cenin nasıl bilinçli olabilir? O halde bilinci ortaya çıkaran doğumun kendisi midir? Bu düşünceyi kabul etmek oldukça zordur, çünkü beyin doğum sürecinden hiç etkilenmez... Bir yanda, bir nöronun beynin doğru bölgesine giden tek yönlü gliyal rayından ne zaman ineceğini nasıl bildiği ve belirli bir devre içinde ekip kuracağı benzer nöronları nasıl tanıdığı gibi, çözülmesi gereken çok sayıda soru; diğer yanda ise, tam bir muamma olarak kalan daha genel bilmeceler var. Gelişmekte olan beynin içinde, bireysellik hangi aşamada filizleniyor? Nöron devreleri bireysel bir beynin yanı sıra bireysel bir bilinci nasıl ortaya çıkarıyor? Bir cenin neyin bilincinde olabilir?82

Nöronları bu özelliklerle yaratan, gerektiği anda gerektiği şekle sokan, gidecekleri yerlere onları tek tek yerleştiren sonsuz ilim sahibi Rabbimiz'dir. Herkes -bu gerçek üzerinde düşünse de düşünmese de- burada çok genel anlamda değindiğimiz aşamalardan geçerek yaratılmıştır. Daha kendisi şuurunda değilken, ihtiyacı olan tüm sistemler kendisi için bedeninde yaratılmıştır. Üstelik bunların oluşumunun yanısıra düzenli bir sistem olarak çalışmaları ile ilgili de hiçbir sorumluluğu yoktur. Vücudumuzdaki bu mükemmel düzen Rabbimiz'in üzerimizdeki rahmetinin sayısız örneğinden sadece bir tanesidir.


79. Science Vie, Mart 1995, no. 190, s. 88.
80. Gerald L. Schroeder, Tanrının Saklı Yüzü, Gelenek Yayınları, çev: Ahmet Ergenç, İstanbul, 2003, s. 118

Benzer Sinyaller Birbirinden Çok Farklı Mesajları Nasıl Taşır?



Beynin Lisanı: Elektrik Sinyalleri
Işık, retinadaki bir hücreye çarptığında ya da ses dalgası kulaktaki bir alıcı hücreyi uyardığında alıcı hücre bu uyarıyı elektrik sinyallerine -beynin lisanına- döndürür. Bu dönüşüm ya da tercüme çok hızlı, kusursuz ve bilim adamlarını cevapsız bırakacak düzeyde komplekstir.

Buraya kadar duyu organlarımızın işleyişini ve bazı mucizevi özelliklerini aktardık. Tüm duyu organlarımızdaki ortak yön, dışarıdan aldıkları uyarıcıları elektrik sinyallerine dönüştürerek beyindeki ilgili duyu merkezine aktarmalarıydı. İşte bu noktada çok şaşırtıcı bir gerçek karşımıza çıkar: Beynin duyu organlarından aldığı mesajların tümü aynı tür uyarılardan meydana gelmektedir. Beynin çeşitli merkezlerine ulaştırılan bu uyarıların hepsi elektrik akımları şeklindedir. Birbirinin aynı olan elektriksel akımların, birbirinden çok farklı bilgiler içermesi ve beynin farklı merkezlerinde farklı etkilere sebep olması son derece hayret verici bir durumdur. Susan Greenfield İnsan ve Beynimiz adlı kitabında bu olağanüstü duruma şöyle dikkat çekmiştir:

Görsel kortekse gelen elektrik sinyalleri görme olarak algılanırken, beynin somatik-duyusal korteks ya da işitme korteksi gibi farklı bir bölümüne gelen tamamen aynı türden elektrik sinyallerinin neden dokunma ve duyma olarak algılandığı, beynin bir diğer şaşırtıcı ve gizemli yönüdür.77

Greenfield'in "gizemli" olarak ifade ettiği gerçek, aslında son derece açıktır: Duyu organlarımızın işleyişi, bedenimizin tüm diğer fonksiyonları gibi kusursuz bir yaratılışla var edilmiştir. Yüce Rabbimiz aynı kara topraktan birbirinden çok farklı renklerde, tatlarda, kokularda bitkiler, meyveler çıkardığı gibi, birbiriyle aynı elektrik sinyallerinin beynimizde birbirinden tamamen farklı şekillerde algılanmasını sağlamaktadır. Bu sayede dış dünyadaki renkleri, kokuları, tatları kusursuz şekilde hissedebilmekteyiz.

77. Susan Greenfield, İnsan Beyni, Varlık Bilim, 2000, s.61.

Denge ve hareket


Aralıksız yer çekimi olmasına rağmen nasıl ayakta durabiliyorsunuz? Düşmeden kendi etrafınızda aniden nasıl dönebiliyorsunuz? İç kulağın girişindeki organlar, kafanın hareketi ve pozisyonu hakkında beyne bilgi yollayarak dengenin elde edilmesine yardımcı olurlar. Kafanın hareketi kanallardaki sıvının hareket etmesine ve tüycüklerin eğilmesine sebep olur; eğilen tüycükler beyne doğru giden mesajları başlatırlar. Kanalları oluşturan üç düzlem birbirlerine dik olarak yerleşmiştir, bu yüzden de farklı hareketlere ayrı tepki verirler. Bir tanesi aşağı yukarı harekete çok hassastır, bir tanesi yanlara doğru olan harekete ve diğeri de eğilme hareketine hassastır.

Aralıksız yer çekimi olmasına rağmen nasıl ayakta durabiliyorsunuz? Düşmeden kendi etrafınızda aniden nasıl dönebiliyorsunuz?

İç kulağın girişindeki organlar, kafanın hareketi ve pozisyonu hakkında beyne bilgi yollayarak dengenin elde edilmesine yardımcı olurlar. Başın hareketi kanallardaki sıvının hareket etmesine ve tüycüklerin eğilmesine sebep olur; eğilen tüycükler beyne doğru giden mesajları başlatırlar. Ancak bu kanaldaki dokular farklı hareketlere ayrı tepki verirler. Bir tanesi aşağı yukarı harekete çok hassastır, bir tanesi yanlara doğru olan harekete ve diğeri de eğilme hareketine hassastır.

İç kulağımızın içinde "vestibüler sistem" adı verilen özel bir mekanizma vardır. Dengemizi sağlamamıza yardım eden bu sistem hangi yöne hareket ettiğimizi de bildirir. Vestibüler sistem "yarım daire kanalları" adı verilen ve özel bir sıvıyla dolu üç tünelden oluşur. Her kanalda tüylerle kaplı birer bölge bulunur. Bu tüyler alıcı hücrelerdir ve hareket ettiğimiz zaman kanallardaki sıvı, tüylerin üzerinden akarak onları büker. Bu bükülme beyne gönderilen elektrik sinyallerine dönüştürülür. Beynimiz bu sinyalleri çözümleyerek o sırada ne yaptığımızı ve konumumuzu bilir.

Kimi zaman dengenizi kaybetmenizin sebebi iç kulakta yaşanan sarsıntıdır. Başınızı eğdiğinizde ya da sağa sola çevirdiğinizde bu kanallardaki tüyler eğilmeye başlar, tüylerdeki bu durum bu tüylerin başın ve kanalın hareketlerine oranla saniyenin küçük bir yüzdesinde harekete geçmesine neden olur. Tüylerin harekete geçmesiyle birlikte her bir tüyün tabanında var olan sinirlerde gerçekleşen kimyasal reaksiyonlar sonucunda, bilgiyi duyu sistemine aktaran elektrokimyasal sinyaller üretilir. Daha sonra da beyin, bu sinyalleri vücudun duruşuna ilişkin bilgiyle -bacak eklemlerinin açısı, görüntümüzle ilgili sinyaller, kaslardaki kasılmalar gibi- birleştirerek vücutta gerçekleşen sendelemeyi fark eder.

Kulaktaki bu sistem gözlerdeki, boyundaki, kaslardaki ve bağlardaki sinir alıcıları ile beraber çalışır; bunların hiçbiri tek başına insanı dengede tutmak için yeterli değildir. Durmakta olan bir trenin penceresinden dışarı bakıp, bir başka trenin uzaklaştığını gördüğünüzde, gözleriniz sanki hareket ediyormuşsunuz gibi bilgi verecektir. Ancak vücudunuzdaki diğer sinir alıcıları size bunun aksini bildirerek, çevreyi doğru algılamanızı sağlar. Böylece sizin sabit, diğer trenin hareket halinde olduğunu anlarsınız.

Elbette ki burada "beyin bu verileri birleştirir" diyerek kısaca tanımladığımız işlem, aslında her bir hücrenin ve bir milyardan fazla aksonun sinyal aktarımındaki kusursuz iletişim ağı neticesinde gerçekleşmektedir. Vücudumuzun denge mekanizması bilinçli bir yaratılışın ürünüdür.

Elektrik Sinyallerinin Ses Olarak Yorumlanması ve İşitme Algısı


Dış kulak, çevredeki ses dalgalarını kulak kepçesi ile toplayıp orta kulağa iletir. Orta kulak ise aldığı ses titreşimlerini güçlendirerek iç kulağa aktarır. İç kulak da bu titreşimleri sesin yoğunluğuna ve sıklığına göre elektrik sinyallerine dönüştürerek beyne gönderir. Beyinde birkaç yere uğradıktan sonra mesajlar, son olarak bu sinyallerin işleme koyulup yorumlandığı duyma merkezine iletilirler. Böylece duyma işlemi de beyindeki duyma merkezinde gerçekleşir.

İşitme algısındaki en şaşırtıcı özelliklerden biri kulakta yer alan kanallardaki 20.000 tüyün tepki verme hızıdır. Orta kanal, saniyede 256 devirle titreşir. Orta kulağın hemen üstündeki kanal, saniyede 512 devirle ve bunun üstündeki kanal da, saniyede 1.024 devirle titreşir. Tüylerin böylesine yüksek titreşimleri yorumlamaya elverişli yapısı, müzikteki notalar arasında hassasiyetle ayrım yapabilmemezi sağlar. Bu, bedenimizdeki en hassas ve en hızlı tepki sistemlerinden birini oluşturur.

Beynin kulaktan gelen ses titreşimlerini çözümlerken, sesi -konuşmacının konuşma hızından, yüksekliğinden veya aksanından etkilenmeden- kelimelere, bu kelimeleri de cümle parçalarına çevirmesi gerekir. Çoğu zaman kafamızın içerisindeki hayranlık uyandıran bu yorumlama sisteminin hiç farkında olmayız. Kulaktaki kompleks tasarım bilim adamlarının sık sık övgülerini dile getirmelerine sebep olmuştur. Bunlardan biri şöyledir:

Mühendislik harikası. İnsan vücudunda yer alan organlardan sadece birkaç tanesi, kulak gibi küçücük bir alanda, çok fazla şeyi başarmaktadır. Eğer bir mühendisin kulağın işlevini taklit etmesi gerekse, yaklaşık 16 cm3'lük bir alana bir ses sistemi sığdırması gerekirdi. Sözü edilen bu ses sisteminde ... geniş çaplı bir mekanik çözümleyici, naklen yayınlayıcı ve ses yükseltme birimi, mekanik enerjiyi elektrik enerjisine dönüştüren çok kanallı bir sistem, hassas bir hidrolik denge sağlama sistemi bulunması gerekecekti. Bu minyatürleştirme mucizesini gerçekleştirebilse bile, büyük olasılıkla kulağın performansına eşit olmasını umut edemezdi. Kulak, menzilinin bir ucunda bir sis düdüğünün alçak sesini, diğer bir ucunda da bir jet motorunun keskin bağırtısını duymaya göre kendini ayarlayabilir. Bu organ, kemanla çalınan bir müzik ile bir senfoni orkestrasındaki viyolayla çalınan bölümler arasındaki ince ayrımı yapabilir... Hatta uyku sırasındayken bile kulak inanılmaz bir etkinlikle işlevlerini yerine getirir. Çünkü beyin, kulak yoluyla kendisine iletilen sinyalleri yorumlayabilir ve seçebilir. Bir insan gürültülü bir trafikte veya komşusunun televizyonunun yüksek sesiyle de uyuyabilir, sonra da alarmlı bir saatin yumuşak sesiyle ise hemen uyanabilir.75


Titreşen hava moleküllerinden oluşan ses dalgaları kulak zarını etkiler. Zarda oluşan titreşimler üç küçük kemikten meydana gelen bir mekanizmayı harekete geçirir. Bu mekanizma başka bir zarı harekete geçirerek, titreşimleri tüylerle kaplı olan sıvı dolu kanallara aktarır. Kanaldaki tüycükler ses dalgalarındaki basınç farklılıklarına tepki göstererek, birtakım sinyallerin oluşmasını sağlarlar. Bu sinyaller, Rabbimiz�n rahmetiyle beyinde bir şarkının melodisi, rüzgarın sesi, kapı zili gibi büyük bir hassasiyetle yorumlanır.

Kulak aynı zamanda algıda seçiciliğe sahiptir. Kulağın bu özelliğini anlamak için gece vakti bir çocuğun ağlama sesini duyduğunuzda olanları düşünebiliriz. Ses sinyali beynin ilgili bölgesine gönderilir ve burada adım adım deşifre edilir. Ne tür bir ses olduğu, kime ait olduğu gibi bilgiler tespit edilir. Uzun süreli bir hafızaya sahip olduğunuz için bu ses size tanıdık gelir ve bunun çocuklarınızdan birine ait olduğunu anlarsınız. Bu bilgi ile beraber beyniniz artık çocuğunuzun yardım istediğini bilir ve bir acil durum yaşandığının sinyalini gönderir. Buna bağlı olarak, vücudu harekete geçirmek için adrenalin akışının sağlanması gibi hazırlayıcı reaksiyonlar gerçekleşir. Tüm bunlar hareketsiz bedeninizi hareket için teşvik eder ve siz, çocuğun yatağına doğru harekete geçersiniz. Ayrıca size çocuğun yatağının nerede olduğunu söyleyen hafızanız devreye girer. Son derece sade olarak aktardığımız bu algı ve hareketler zinciri, mucizevi biyokimyasal, biyoelektriksel işlemler içerir. Bütün bunlar her biri binlerce terminale sahip olan yüz binlerce aksonun bir katrilyon (1.000.000.000.000.000) lifle karşılıklı bağlantıya geçmesi sonucunda gerçekleşir. Beyniniz sinyalleri deşifre etmek için analizler yaparken, siz bunun hiç farkına varmazsınız. Peki tüm bunları algılayan bir et yığını olabilir mi? İşte bu soru ön yargısız bilim adamlarını da düşünmeye sevk etmektedir. Bunlardan biri olan Gerald L. Schroeder işitme algısı ile ilgili şunları sorgulamaktadır:

Ve sırada zor sorunun zor kısmı var: Müzik sesi. Ses dalgaları, kulak zarına çarparak ... beyin korteksinde kimyasal olarak depolanmış biyoelektrik sinyallere dönüşür. Fakat sesi nasıl duyabiliyorum? Beyinde depolanmış bilgi de dahil olmak üzere buraya kadar olay tamamıyla biyokimyasaldır. Ne var ki ben biyokimyayı duymam. Sesi duyarım. Kafamın içinde bu ses nerede oluşuyor? Veya görüntü; ya da koku? Bilinç nerededir? Karbon, hidrojen, nitrojen, oksijen vb. gibi maddelerden hangisinin durağan atomları, kafamın içerisinde bir düşünce üretebilecek ya da bir şekil yaratabilecek kadar akıllı hale gelebilir ki? Bu saklı biyokimyasal bilgi kodlarının nasıl hatırlandığı ve bilinçte tekrar nasıl canlandırıldığı bir muamma olarak kalmaya devam etmektedir.76

Schroeder'in "bir muamma" tanımlaması yanlıştır. Elbette dış dünyayı algılayan bir et parçası olan beyin değil, Allah'ın insana vermiş olduğu Ruh'tur.

76. Gerald L. Schroeder, Tanrının Saklı Yüzü, Gelenek Yayınları, çev: Ahmet Ergenç, İstanbul, 2003, s. 20.

Elektrik Sinyallerinin Tat Olarak Algılanması


Tat alma sistemimiz, proteinleri, iyonları, kompleks molekülleri ve pek çok kimyasal bileşiği analiz eder; bir ömür boyu durup dinlenmeksizin bizim adımıza çalışır. Dil, adeta karmaşık kimyasal analizler yapan bir laboratuvar gibi faaliyet gösterir. Yediğimiz veya içtiğimiz her besin çok sayıda farklı tat molekülünden oluşur. Herhangi bir tabak yemekte, yüzlerce veya binlerce ayrı kimyasal madde bulunur. Dilimizdeki tat alıcıları da bu farklı molekülleri kusursuz bir doğrulukla tahlil ederler.


Herhangi bir tabak yemekte, yüzlerce hatta binlerce ayrı kimyasal madde bulunur. Dil, gelişmiş bir laboratuvar gibi, kimyasal yapıları farklı sayısız molekülü şaşmaz bir doğrulukla tahlil eder. Yiyeceklerdeki moleküllere ait bilgileri, dilin üzerindeki tat alıcıları bir elektrik sinyali olarak beynin ilgili merkezine gönderir. Yediğimiz bir portakalın ya da bir çileğin lezzeti, Rabbimiz'in beynimizde oluşturduğu elektriksel sinyallerin bir yorumundan ibarettir.

Yukarıda alttaki küçük resimde dile pürüzlü görünümünü veren papillanın 60 kat büyütülmüş hali görülmektedir. Papillaları oluşturan tat tomurcukları, tüm dilde 10 bin kadardır. Tat tomurcuklarının her birinde ise 50 kadar tat hücresi bulunur.

Dilimizde bu analizin gerçekleşmesi için son derece özel bir tasarım vardır. Vücudumuzun başka hiçbir yerinde değil, sadece besinlerin sindirimine başladığımız ilk aşamada -dilimizde- tat alma konusunda uzmanlaşmış hücreler yer alır. Bu hücreler besinlerin analizini yaparak, bunlarla ilgili bilgileri beyine elektrik sinyali olarak ulaştırırlar. Dilden beyne ulaşan bu elektrik sinyallerinin lezzet olarak yorumlanması ise yine beynimiz tarafından gerçekleştirilir.

Tat alma sistemimizdeki hücrelerin, tam olması gereken sayıda, yerde ve en ideal şekilde bulunmaları da üstün bir yaratılış örneğidir. Elektrik sinyallerini yorumlayan beynimizin, bize ne yediğimizi söylemesi, her seferinde hatasız olarak yediklerimizi ayırt etmesi, üstelik bunların kimyasal analizini yaparak ekşi mi, acı mı, tatlı mı olduklarını bildirmesi vücudumuzdaki yaratılış mucizelerinden biridir.

Koku Moleküllerinin Elektrik Sinyaline Çevrilmesi


Koku algımızın işleyişi de diğer duyu organlarımızın işleyişine benzer. Aslında burnumuzun dışarıdan görünen bölümünün görevi sadece bir kanal gibi, havadaki koku moleküllerini içeri almaktır. Vanilya veya gül kokusu gibi uçucu moleküller, burnun epitelyum denilen bölgesindeki titrek tüylerde bulunan alıcılara gelir ve bu alıcılarda etkileşime girerler. Koku moleküllerinin epitelyum bölgesinde yaptıkları etkileşim, beynimize elektrik sinyali olarak ulaşır. Bu elektrik sinyalleri ise beynimizde koku olarak algılanır.

Koku moleküllerinin yaptığı etkinin elektrik enerjisine dönüştürülmesinde hayranlık verici bir sistem işler. Burundaki hassas zar üzerinde 50 milyon kadar sinir hücresi bulunmaktadır. Her bir sinir hücresi pek çok protein içerir. Bir koku molekülü, şekli uyduğu sürece bu sinir hücrelerindeki protein moleküllerinden birine tutunabilir. Böylelikle bu bölgede elektriksel olarak bir kutuplaşma meydana gelir. Bu kutuplaşma elektrik enerjisi meydana getirir ve algılanan kokuya ait elektrik sinyalleri, alnın hemen altındaki koku alma bölgesine ulaşır. Burada farklı hücrelerden gelen bilgiler değerlendirilir ve çeşitli beyin yapılarına gönderilerek, "koku"nun kaynağı belirlenir.


Burnun üst bölümünde çok sayıda sinir hücresi içeren ve �oku epiteli�olarak adlandırılan iki küçük alan bulunur. Bu bölgeler koku algısından sorumludur. Koku ise havada molekül olarak dolaşır. Nefes alırken havadaki oksijenin yanı sıra bu moleküller de burna girerler. Havayla taşınan �oku molekülleri�burundaki alıcılara ulaştığında burada bulunan hücreler uyarılır. Uyarılan hücre, beyne bir elektrik sinyali gönderir. Beyin koku molekülü ile değil, yalnızca kendisine ulaşan elektrik sinyali ile muhatap olur. Beynin elektrik sinyaliyle ilgili yaptığı yorumu insan koku olarak algılar.

Taze ekmeğin, bahçedeki güllerin, yeni biçilmiş çimenlerin, yağmurdan sonraki toprağın, sıcak çorbanın, çileğin, şeftalinin, maydanozun, kullandığınız sabunun, şampuanın kokusunu ve buna benzer daha pek çok kokuyu duyabilmenizi burnunuzdaki hassas yapıya borçlusunuz. Pek çok insan gün içinde ne kadar çok koku duyduğunu ve bu kokular sayesinde cisimlerin şeklinin zihninde nasıl belirdiğini hiç düşünmez. Oysa yediğiniz yemeğin lezzet kazanmasını sağlayan, koku alma duyunuzdur. Koku, cisimleri tanımanızdaki önemli etkenlerden bir tanesidir.

Aldığınız her nefesle birlikte cisimlere ait kokular da burundan içeriye girer. İnsan burnu duyduğu bir kokuyu 30 saniye içinde analiz edecek ve yaklaşık 3.000 değişik kokuyu birbirinden ayırt edebilecek müthiş bir kapasiteye sahiptir.74


74. John Farndon, Angela Koo, Human Body Factfinder, s. 188.

Beyinde Oluşan Üç Boyutlu Dünya

Beyin, nesnelerin uzaklıklarının tespit edilmesinde de son derece hassastır. Her iki göz aynı anda hareket etmelerine karşın, farklı açılarda görüntü elde ederler. Gözlerin açıları arasındaki bu farklılıklar ise beynin, görülen nesnenin ne kadar uzakta olduğunu hesaplamasına yardımcı olur. Beyne iletilen iki görüntü kıyaslanır ve görüntünün derinliği belirlenir; böylece siz de elinizdeki kitabı üç boyutlu bir görüntü içinde görürsünüz. Eğer bu özellik olmasaydı, herşeyi çift ve tek bir düzlem üzerinde görürdük. Bu bakımdan iki gözün görüş alanlarının farklı açılarda olması son derece hikmetli bir yaratılış örneğidir.

Bir tenis maçı izlediğinizi düşünelim. Oyunculardan biri, ağın üzerinden geçen topa raketiyle karşılık veriyor. Beyniniz size vuruşun nasıl olduğu hakkında kanaat belirtiyor. Topu, ağı ve raketi aydınlatan ışık, siz farkında olmadan eş zamanlı bir şekilde gözlerinize ulaşıyor. Bir raket ya da bir tenis topu olarak algıladığınız şey, beyninizde çok sayıda elektriksel sinyalin iş birliği yapmasından oluşan bir görüntüdür ve her bir sinyal beyindeki ilgili kısma yöneltilir. Ancak beyninizde, bu tenis maçını nasıl gördüğünüze ilişkin herhangi bir ipucu yoktur. Bilim adamları görüntü, ses ya da koku verilerinin beynin ilgili kısımlarına nasıl yansıtıldığını açıklamaktadırlar, ancak onları asıl şaşkınlık içinde bırakan bu elektrik sinyallerinin yeniden, orijinaline uygun olarak beyinde nasıl düzenlendiğidir.

Gerald L. Schroeder görme olayındaki mucizevi yönlerden birkaçını şu ifadelerle dile getirmektedir:

Biyolojik bilgi transferi süreci hayranlık verici bir hikayedir. Sadece bu olaylar zincirinin tek bir parçasını ele almak istersek, beyin gözdeki retinaya yansıtılan iki boyutlu görüntünün üç boyutlu bir dünyayı temsil ettiğini nereden bilir? Çünkü görüntü bir dizi elektriksel uyarıya dönüştürülür ve bunların her biri... voltaj farklarıdır... Bu aklı nereden almıştır?73 Schroeder'in de vurguladığı gibi, elektriksel uyarıların bilgiyi şifreli olarak taşıması, sonra bunların maddesel dünyadakinin aynısı olarak beynimizde yorumlanması, üstün bir aklın ürünüdür. Yazarın "Bu aklı nereden almıştır?" ifadesi ile dikkat çektiği aklın gerçek sahibi ise, kuşkusuz hepimizi yaratan, görmemiz için gözler veren Rabbimiz'dir.

73. Gerald L. Schroeder, The Hidden Face of God: How Science Reveals the Ultimate Truth, The Free Press, New York, 2001, s. 92

Işık Enerjisinin Elektriğe Çevrilmesi ve Görme Algısı


Görme olayı oldukça aşamalı bir biçimde gerçekleşir. Görme sırasında, herhangi bir cisimden gelen ışık demetleri (fotonlar), gözün önündeki lensin içinden kırılarak geçer ve gözün arka tarafındaki retinaya ters olarak düşerler. Buradaki hücreler tarafından elektrik sinyaline dönüştürülen görme uyarıları, sinirler aracılığı ile, beynin arka kısmındaki görme merkezi adı verilen küçük bir bölgeye ulaşırlar. Bu elektrik sinyali bir dizi işlemden sonra beyindeki bu merkezde görüntü olarak algılanır.

Gözde, koni ve çubuk olarak ifade edilen iki çeşit alıcı hücre bulunmaktadır. Çubuklar ışığa karşı öylesine hassaslardır ki, soluk bir ışıkta dahi görüntünün oluşmasını sağlarlar. Ancak normal gün ışığında aşırı ışıktan dolayı, herhangi bir sinyali iletemeyecek hale gelirler. Koniler ise yüksek ışıkta işlev gördüklerinden, gün ışığında görüntünün oluşmasını sağlarlar.


Her 2 ila 10 saniyede bir göz kırparsınız. Bu kelimelerin her birine odaklandıkça gözleriniz saniyede yüzlerce kez ileri geri döner, retina bilgisayar benzeri on milyar hesap yapar. Tüm bunlar öylesine kusursuz işler ki, çoğu zaman nasıl gördüğünüzü düşünmeye dahi gerek duymazsınız.

Örneğin televizyon ekranına baktığınızda, bilgiyi gözden beynimize ulaştırmak için 1 milyon sinir lifinden oluşan optik (görme ile ilgili) sinire ihtiyaç vardır.72 Gözlerin televizyondaki bir görüntü ile uyarılması retinanın ışık alıcılarında kimyasal bir tepkimeye neden olur. Bu tepkime sonucu retinadaki sinyaller optik sinirleri, optik sinirler de beyni uyarır. Beyinden gönderilen sinyaller de saniyede 100 metre hızla gözleri, ayak parmaklarını, ayak bileklerini, bacakları, omuzları, kolları, bilekleri ve parmakları kontrol eden kasları uyarır. Görüntünün algılanması ile birlikte, koltuğa yönelme, kumandanın ses düğmesine basma gibi hareketler gerçekleşir.

İnsan gözü, kırmızı ile mor aralığındaki değişen renkleri algılar. Bu aralığın altındaki kızıl ötesi ışınları ve üzerindeki ultraviyole ışınlarını algılayamaz. Bu, son derece hikmetli bir yaratılıştır. Eğer gözümüz bu aralıktaki ışık dalga boylarını değil de, daha düşük dalga boylarını algılamaya ayarlı olsaydı, örneğin radar ekranındaki gibi bulanık bir görüntü ile muhatap olacaktı. Eğer gözümüz daha yüksek dalga boylarını algılamaya ayarlı olsaydı, bu sefer de röntgen filmindeki gibi görüntülerle yaşayacaktık. Ancak Allah'ın rahmetiyle gözdeki hücreler ancak bu dalga boylarındaki ışığı elektrik sinyaline çevirmekte ve böylesine renkli, detaylı bir görüntü görmemizi sağlamaktadır.

72. Ian Glynn, An Anatomy of Thought: The Origin and Machinery of the Mind, Oxford University Press, New York, 1999, s. 114.






Hislerin Nedenleri

Bedenimizin Her Yerinin Aynı Hassasiyette Olmamasının Hikmeti:

Kör bir insan, parmak uçları ile Braille alfabesini (kör alfabesini) okur. Ancak bunu, vücudunun bir başka yeriyle örneğin parmağın eklem yerleri ya da dış yüzeyleri ile yapamaz. Çünkü parmak uçlarındaki algıya hassasiyet derecesi, alıcı sayısı ile bağlantılı olarak çok daha fazladır. Vücut yüzeyine yayılmış halde 640.000 kadar hassas deri alıcısı vardır.70 Parmak uçlarında yoğun olarak m2'de 9.000 tane alıcı bulunmaktadır. Bu alıcılar, parmak uçlarımızdaki hafif bir sürtünmeye bile milisaniye içinde tepki verirler. Bu sayede parmak uçlarımızla çok hassasiyet gerektiren işleri yerine getirebiliriz. Ancak dirseklerimiz parmak uçlarımız gibi hassas değildir. Bu da son derece hikmetlidir; eğer aksi olsaydı, en ufak bir pürüzü yoğun olarak hissedeceği için dirseklerimizi bir yere yaslamak son derece rahatsız edici olurdu. Diğer taraftan bir kumaşın yumuşaklığını, bir yüzeyin kayganlığını algılamamız için parmağımız yerine dirseğimizle dokunmamız gerekirdi. Bu detaylar düşünüldüğünde, vücudumuzda ihtiyacımıza ve kullanım kolaylığına yönelik çok özel bir tasarım bulunduğu açıkça görülmektedir.


Dokunma alıcılarının sabit uyarılara adapte olmasındaki hikmet:

Dokunma alıcıları ani değişikliklere cevap verirler, fakat sabit bir uyarıya kısa sürede adapte olurlar. Beyin, temasın başlangıcı ve sonu hakkında bilgilendirilir, fakat ara aşamalarda beyne bilgi akışı olmaz. Bu da son derece hikmetlidir; çünkü genellikle derimize dokunan nesneler hakkında sürekli olarak bilgilendirilmeye ihtiyaç duymayız. Dokunma alıcılarının yalnızca bir değişiklik olduğunda bilgi iletmeleri yeterlidir ve bu bizim açımızdan büyük bir rahatlıktır. Dokunma alıcılarının sabit bir uyarıya hızlı bir şekilde adapte olma yeteneği, sinir sisteminin önemli bir özelliğidir.71

Örneğin her sabah üzerimize bir şeyler giyeriz, ilk başta çeşitli alıcılar beyne bunların ağırlığını, yumuşaklığını ve basıncını anlayacağımız mesajlar yollar. Ama kısa bir süre geçmeden mesajlar azalır ve yok olur; çünkü biraz önce de belirttiğimiz gibi sabit yoğunluktaki sürekli uyarılar alıcıların faaliyetini durdurur. Aynı şekilde kol saatimizi ilk taktığımızda metalinin serinliğini, kalınlığını, ağırlığını hissederiz; bir süre sonra ise varlığını unuturuz. Ancak kayışı açılıp düşecek gibi olursa derimizdeki yeni etki dikkatimizi çeker. Aynı şekilde şapkamızı çıkardığımız anda başımızdaki alıcılar bu yeni durumu beynin ilgili bölgesine hemen bildirirler ve hislerimiz şapka çıkarma hareketimizle uyum içinde değişir.

Sistemin bu işleyişi bizim için çok önemlidir. Çünkü vücudumuza giydiğimiz kıyafetlerin, taktığımız aksesuarların varlığını her an hissediyor olmamız, kuşkusuz son derece rahatsız edici olurdu. Bu nedenle derimizin sabit uyarılara adapte olması Rabbimiz'in çok büyük bir rahmetidir.


Ağrı ve acı hislerinin hikmeti:

Ağrı ve acı hisleri, vücudumuzda bir dokunun hasara uğradığını bildiren ikazlardır. Sinir alıcılarımızdan birkaç milyonu acıları algılar, ne kadar çok darbe alırlarsa o kadar şiddetli uyarılırlar. Örneğin bacağımızı masanın kenarına çarptığımızda ya da yerdeki kırık cam parçasına bastığımızda ağrı ya da acı hissederiz. Ağrı ve acı hislerinin hayatımızda çok önemli bir yeri vardır, çünkü bunlar vücudumuzda bir sorun olduğunu bildirirler. Cildimizdeki alıcı hücreler bize zarar veren şeylere tepki verdiğinde -beynimize acil mesajlar gönderdiğinde- ağrı ve acı hissederiz. Bunun üzerine biz de bu rahatsızlığı gidermek için hemen önlem alırız.

Bazı hisler acı, bazıları batma, bazıları yanma, bazıları da ağrı şeklindedir. Batma hissi beyne en hızlı şekilde -saniyede 30 metre hızla- gider. Bu hissi algılayan alıcıların yeri tam derinin dış katmanındadır. Yanma veya acı hislerinin sinyalleri ise beyne, batma hissine kıyasla daha yavaş -saniyede 2 metre hızla- giderler.

Bu hislerin algılanış hızındaki farklılıkta da büyük hikmetler vardır. Örneğin ilk önce keskin bir batma acısı hissetmemiz -örneğin bir arının iğnesinden- sonra yavaşça yanma hissinin oluşması son derece önemlidir. Çünkü batma hissi tehlikeye karşı hızlı bir koruma sağlar. Bu da kuşkusuz sonsuz rahmet sahibi Rabbimiz'in hikmetli yaratışının örneklerindendir.


Yaralanma esnasında acı hissinin azalmasının hikmeti:

Bazı insanlar yaralandıkları anda ve yaralandıktan sonra bir süre acı hissetmezler. Böylece insan, yaralı olduğu halde kendisini koruyacak veya tehlikeden kaçabilecek güç bulur. Acı hissinin iletilmesi de sinir hücreleri aracılığıyla olur. Söz konusu hücreler, acı, sızı, ağrı ve üzüntüyü yok eden, vücudu rahatlatan "endorfin" maddesi içerirler. Endorfin, adeta beynimizin ürettiği bir ağrı kesicidir. Endorfin ağrının ilk hissedildiği anda salgılanır, ama ilk kriz atlatıldığında etkisi geçer. Bu sayede ciddi olarak yaralanan insanlar bile belli bir süre için şiddetli bir ağrı hissetmezler. Ağrı kesici ilaçlar da aynı mantıkla işlev görürler. Pek çoğu hastalıkları ve yaraları tedavi etmezler; bunlar sadece ağrıyı hissetmemizi engelleyen kimyasal madddelerdir. Yaralanma esnasında acı hissinin azalması Allah'ın insanlar üzerindeki rahmetinin bir örneğidir.

Elektrik Sinyallerinin Dokunma Hissine Çevrilmesi

Diğer tüm algılar gibi, dokunma hissi de deri hücrelerinin elektrik sinyalleri olarak ilettiği bilgilerin beyinde yorumlanmasıyla oluşur. Siz bir kumaşa dokunduğunuzda onun sert, yumuşak, ince ya da kaygan olduğunu beyninizde algılarsınız. Parmak uçlarınızdaki alıcı hücreler, kumaşa ait bilgileri beyninize elektrik sinyali olarak ulaştırırlar ve bu sinyaller beyninizde dokunma hissi olarak algılanır. Örneğin siz pürüzlü bir yüzeye dokunduğunuzda, onun gerçekte pürüzlü olup olmadığını veya pürüzlü bir zeminin gerçekte nasıl bir his uyandırdığını asla bilemezsiniz. Çünkü siz pürüzlü bir yüzeyin aslına hiçbir zaman dokunamazsınız. Sizin pürüzlü zemini hissetmek konusunda bildikleriniz, beyninizin belli uyarıları yorumlama şeklidir.

Deride ısıya, soğuğa, dokunmaya, ağrıya, basınca ve sarsılmaya tepki veren, çeşitli hassasiyetlerde milyonlarca alıcı bulunur. Bu alıcılar beyne elektrik sinyalleri gönderirler ve biz bu sinyaller aracılığıyla dokunduğumuz nesne ile ilgili çok kapsamlı bilgi sahibi oluruz.

Şu an elinizde tuttuğunuz bu kitap da, tüm detayları ile sizin beyninizde yaratılır. Dışarıdaki dünyada maddesel olarak bir kitap vardır, ancak sizin muhatap olduğunuz kitap beyninizin içindeki bir kopyadan ibarettir. Kitaba dokunduğunuzda oluşan hisler, tümüyle elektrik sinyallerinin yorumudur. Dolayısıyla dokunduğunuzu sandığınızda, aslında beyninizin içindeki kitabın sayfalarını çevirir, beyninizin içinde sayfaların inceliğini, kayganlığını hissedersiniz. Gerçekte ise, hiçbir zaman bu kitabın aslına dokunamazsınız.

ELEKTRİK AKIMI İLE TAŞINAN HAYATİ BİLGİLER


ünya hakkında bildiğimiz herşey bize duyularımız vasıtasıyla ulaşır. Duyular olmasaydı, çevremizdeki herşeyle bağlantımız kesilirdi. Kolumuzu masaya yasladığımızı ya da yumuşak bir koltuğa oturduğumuzu dahi bilemezdik. Duyular dış dünyada ve vücudumuzda neler olup bittiği hakkında çok kapsamlı bilgi edinmemizi sağlarlar. Örneğin bir arkadaşınızın yüzünün tamamını görmeseniz ya da bu kişiyi arkasından görseniz bile tanıyabilirsiniz. Binlerce farklı koku ve renk tonunu birbirinden ayırt edebilirsiniz. Derinize değen bir tüyü hemen hisseder, düşmekte olan bir yaprağın hışırtısını duyarsınız. Bunların hiçbiri için çaba harcamazsınız.


Bir topu tuttuğunuzda ya da bir gitarın tellerine dokunduğunuzda, yaptığınız hareket ne kadar hafif olursa olsun, parmak uçlarınızda bir basınç hissedersiniz. Bu hafif hareket dahi, parmak ucunda yoğun olarak toplanmış olan binlerce dokunmaya duyarlı sinir alıcısını harekete geçirir. Deri yüzeyinin yakınlarındaki sinir uçlarını kaplayan özel hücrelerde, basınçla birlikte elektrik akımı başlar. Bu akım sinir lifleri aracılığıyla saniyede 130 metre hızla beyne doğru iletilir.

Duyu organlarının, dışarıdaki nesneler hakkında bilgi toplayan bölümlerine "alıcı" adı verilir. Alıcılar, kendilerine ulaşan bilgileri, sinir hücreleri aracılığıyla beyne iletilen elektrik akımlarına dönüştürürler. Beyin kendisine ulaşan bu elektrik akımlarını yorumlar ve sizin, nesnelerin özelliklerini anlamanıza vesile olur. Daha sonra vücudunuzun diğer bölgelerine komutlar göndererek, bu bilgiler doğrultusunda harekete geçilmesini sağlar.

Farklı duyu organlarındaki alıcılar farklı şeyleri algılar ve tepki verirler. Kulaklardaki alıcıların bazıları seslere tepki verir. Bazıları da başın hareketlerine tepki vererek dengeyi korumayı sağlar. Gözlerdeki alıcılar ışığa ve renge tepki verirken, burnun iç kısmındaki alıcılar havadaki kimyasal maddelere tepki verirler. Dilimizdeki alıcılar, sıvılara ya da tükürükte çözünmüş maddelere tepki verirler. Derimizdeki alıcılar dokunma, basınç, sıcaklık ve ağrıya tepki verir. Kas ve eklemlerimizdeki alıcılar ise hareket ettiğimiz zaman tepki vererek, vücudumuzun konumu hakkında bilgi sahibi olmamızı sağlarlar.

Vücudumuz başlı başına bir tasarım harikasıdır. Ancak bu bedenin dış dünyaya duyarlı olması, çevresinde olup bitenleri algılayarak tepki verebilecek yetenekte olması, en az tasarımı kadar olağanüstüdür. Öyle ki günümüzün en önemli teknolojik aletlerinde dahi beyin-vücut arasındaki kompleks işlemleri gerçekleştiren koordinasyon sağlanamamıştır.

Örneğin bilgisayarlarda duyu organları yerine kodlama mekanizması vardır. Bu mekanizma bilgiyi ikili kod adı verilen bir dizi elektriksel sinyale dönüştürür. İkili kod bilgisayarın işlemcisi tarafından yorumlanır. İşlemci, bilgisayarın beyni gibi hareket eder. Örneğin bir duman dedektörü, yükselen ısıya ve dumana tepki verecek şekilde tasarlanmıştır. Dedektör, ısı ve dumanla ilgili verileri ikili kodlara dönüştürür. İkili kodlar bilgisayar işlemcisi tarafından yorumlanır ve komutlar su püskürtme sistemine gönderilir. Böylece su püskürtücüleri çalışmaya başlar. Ancak algılarımız -çalışma sistemleri benzer olduğu halde- otomatikleşmiş komutların ötesinde yorum ve değerlendirme gücüne sahiptir. Örneğin insan beyni dumanı algıladığında, çok yönlü tedbir alabilir: Dumanın miktarına, kaynağına göre pencereyi açabilir, yangın söndürücü kullanabilir, odadaki kişileri boşaltabilir, telefon edip itfaiye çağırabilir... Bu da insanın hiçbir teknik aletle kıyaslanamayacak kadar olağanüstü bir yaratılışa sahip olduğunu gösterir.

Acil Durumlarda Kontrolü Ele Alan Omurilik

Omurilik vücudun iletişim ağının anayoludur. Vücuttan beyne bilgi aktarır ve vücudun diğer bölgelerine talimatlar yollar. Omurilik, geniş bir elektrik hattı gibi sinir tellerinin üzerindeki emirlerin beyin ve bedenin diğer bölümleri arasında rahatça dolaşımını sağlar. Omurilik bu yapısıyla tam bir iletişim merkezidir. Beynin, kafatası kemikleri ile korunması gibi, omurilik de, bel kemiğini oluşturan omurlar sayesinde korunur. Buradaki sinir hücreleri, sinir sisteminden gelen ve beyinden vücuda giden sinyalleri değerlendirerek, nereye ve ne şekilde iletileceklerini belirleyen kompleks elektrik devreleri oluştururlar.


RABBİMİZ�N İLHAMI İLE HAREKET EDEN HÜCRELER

Refleksler hızlı olmak zorundadır, bu yüzden refleks sinyalleri en kısa yoldan ilerler. Örneğin keskin bir nesnenin üzerine basarsanız, dokunma duyunuza ait sinir hücreleri omuriliğinize bir sinyal gönderir. Bu sinyal hareket sinir hücrelerine etki ederek, ayağınızı kaldırmanızı sağlar. Söz konusu sinyalin beyne ulaşıp yorumlanması ise daha geç gerçekleşir. Bu sistem Allah�n insanlar üzerindeki sayısız korumasından biridir.

Omurilik bazen görevini -beynin kontrolü olmaksızın- kısmen bağımsız bir biçimde yerine getirebilir. Bu tür hareketler reflekslerdir. Refleks, belirli bir uyarıya karşı sabit bir tepki olarak tanımlanabilir. Refleksler, risklere ve tehlikelere hızla tepki vermemizi sağlar. İnsan vücudu için karar mercii çoğu zaman beyindir. Fakat sinir sistemimizde acil durumlar için daha hızlı bir sistem kurulmuştur. Birçok refleks hareketi omuriliğimizde bulunan bir grup sinir hücresi tarafından yönlendirilir.

Refleks dediğimiz ani hareketler, omurilik içindeki devreler aracılığıyla olağanüstü hızlı bir biçimde cereyan ederler. Olağanüstüdürler, çünkü hareket kararı beyinden değil, omurilikten gelir ve hızlıdır. Eğer bu mekanizma omurilikten değil de beyinden yönetiliyor olsaydı, yanlışlıkla bir sobaya dokunduğumuz zaman, yanma hissini hissetmekle elimizi çekme refleksi arasında bir zaman dilimi geçerdi. Bu da elimizin biraz daha fazla yanmasına sebep olurdu. Oysa biz bir sobaya değdiğimizde anında geri çekiliriz ve elimizi minimum hasarla kurtarmış oluruz. İşte omuriliğimiz bu derece önemlidir ve çok hassas bir şekilde korunması gerekir.

Omuriliğimizi bir bilgisayarın içindeki kablolara benzetebiliriz. Eğer siz bu kabloları plastik bir kılıfla korumaz ve sürekli olarak eğip, bükerseniz bu kablolar bir süre sonra kopar ve işlevini yitirir. Böylece bilgisayar tamamen çalışmaz hale gelir. Aynı bu örnekteki gibi omurilik de önemli bilgileri ileten karmaşık bir kablo görevi görmektedir. Ve bu hayati kablonun korunması için her türlü tedbir alınmıştır. Bu tedbirlerden bir tanesi omurgamızın, omuriliğimizden çok daha uzun olmasıdır. Böylece omurilik tamamen kemik bir kafes ile kuşatılmış olur.

Eğer omurga gelişirken bir yanlışlık sonucu bir ya da daha fazla omur kemiği tam olarak gelişemezse, "spina bfida" adı verilen önemli bir hastalık ile karşı karşıya kalırız. Bu hastalıkta omurganın arkasında önemli derecede açıklık vardır. Buna bağlı olarak omurilik ve sinir sistemi hasar görür. Önemli mesajlar gerekli yerlere ulaşamaz. Sinirler beyne ulaşamayınca felç -hareket edememe ve hissetmeme durumu- oluşur.

Görüldüğü gibi vücudumuzdaki sistemin kusursuz işlemesi için her parça yerli yerinde olmalı ve kusursuz bir tasarıma sahip olmalıdır. Bundaki en ufak bir değişiklik, vücudumuzda çok ciddi sorunlara sebep olabilmektedir.

Hareketlerin Uyumunu Sağlayan Beyincik

Vücutta dengeden ve hareketten sorumlu bölüm beyincik, beynin sadece onda biri kadarlık bir kısmını kaplamasına rağmen milyonlarca nörondan oluşur. Bu küçük et parçası sürekli olarak vücudun pozisyonu ve hareketleri hakkında bilgi toplayarak, tüm hareketleri kontrolü altında bulundurur. İnsanın düşünmeden olaylara tepki vermesini sağlar ve vücuttaki tüm kasları yönetir. Kaslara talimatlar yollayarak vücudun duruşunu ayarlar ve düzgün hareket etmesini sağlar. Beyinciğin sağladığı koordinasyon sayesinde yürüme, koşma ve benzeri hareketler kusursuz şekilde gerçekleştirilir. Örneğin koşarken önünüze çıkan taşın üzerinden atlar ya da kenarından geçersiniz. Taşı idrak etmeniz, onun yüksekliğini hesaplayarak ne kadar yükselmeniz gerektiğini belirlemeniz, ona takılıp düşmemek için bir plan yapmanız, hangi bacağınızı kaldıracağınıza karar vermeniz, bunun zamanlamasını ayarlamanız aslında son derece detaylı aşamalardan oluşur. Ama bunlar zaman harcamanızı veya dakikalarca düşünmenizi gerektirmez. Beyincik, anında bacak kaslarınıza emir vererek onlara taşı aşmaları gerektiğini emreder ve bu işlem büyük bir kusursuzluk içerisinde gerçekleşir.

Kısacası beyincik, hareket sırasında her bir organın diğer organlara göre nerede bulunduğunun bilincinde olunmasını sağlar. Bir cümleyle ifade ettiğimiz bu özellik aslında son derece önemlidir. Şu an ayaklarınızın nerede olduğunu bilmeniz, hiç de hafife alınabilecek bir yetenek değildir. Çünkü bu yeteneğe sahip olmanız için beynin, bacakların ne yaptığını ve bunu nerede yaptığını her an izlemesi gerekir. Eğer beynin bu tür bir hakimiyeti olmasaydı attığınız her adımda tökezlerdiniz. İşte bizim için kusursuzca işleyen tüm bu sistemler bilinçli bir tasarımın delillerindendir. Bu sistemlerin tek birinin bile tesadüflerin eseri olması mümkün değildir.

Beyindeki Paralel Bilgi İşlem Yeteneği

Beynin faaliyetleri elektrik akımları, kimyasallar ve titreşimler tarafından kontrol edilir. Bu sistemde milyonlarca farklı işlem birbirine paralel olarak sürer gider. Aynı anda ayak ve el parmaklarınızı oynatın, kollarınızı öne doğru uzatıp, her biriyle farklı daireler çizin ve bütün bunları yaparken de başınızı önce sağdan sola, sonra da soldan sağa doğru sallayın ve bir yandan da bir melodi mırıldanın. Siz bunları rahatça yaparken, kaslarınızın her birinde gerçekleşen işlemlerin kompleksliği ciltlerce kitabı kapsayacak nitelikte olur. Örneğin sizin bu sayfada yazılı olan kelimeleri görmeniz ve okumanız, optik sinirlerinizden gelen sinyallerin merkezi sinir sisteminde eş zamanlı olarak işlenmesi ile mümkün olmuştur. Her bir hareket ve düşünce için sinyaller beyinden kaslara uzanan sinir aksonları boyunca yol alır. Akson zarlarındaki sodyum kanalları açılır ve kapanır; sodyum ve potasyum pompaları her bir hücre zarındaki elektriksel dengeyi düzenler; nörotransmitterler akson uçlarındaki sinapslara bırakılır ve bu nörotransmitterler nöronlar arasındaki iletişimi sağlar. Kas lifleri ise her biri saniyede beş devir yapan bir milyon bağlantının ortaklaşa hareketini gerçekleştirir. Böylece siz kollarınızı gererken, başınızı sağa sola oynatırken, bir melodi mırıldanırken, ayak ve el parmaklarınızı oynatırken gerekli olan gücün üretilmesi ve ilgili kasların -ne eksik, ne fazla- kasılması sağlanır. Bütün bunların olağanüstü bir uyumla aynı anda gerçekleştirilmesi birçok insan -farkında olmasa da- bizim için hayati önem taşır.

Karşıdan karşıya geçmek üzere olduğunuzu düşünelim. Trafiği kontrol etmek için başınızı çeviriyorsunuz, bacak kaslarınızda üretilen kuvvetle öne doğru bir adım atıyorsunuz, yaklaşan arabaların uzaklığını ve size ulaşma zamanlarını değerlendiriyorsunuz. Daha sonra diğer yönden akan trafiği kontrol etmek için başınızı çeviriyorsunuz, bu esnada yolun karşı tarafından tanıdık -hafızanızda kayıtlı olan birine ait- bir ses duyuyorsunuz; bu sesi beyninizdeki diğer bölgelerdeki kayıtlarla bağdaştırıyorsunuz; bu kişinin yüzü, kişiliği, adı, duyduğunuz sesle birlikte hafızanızda canlanıyor; ses tellerinizdeki gerilimi ve dudaklarınızın şeklini ayarlayarak bu kişiye adıyla sesleniyorsunuz; elinizle onu selamlayıp, bu arada da güvenli bir şekilde yolun karşı tarafına geçiyor ve bu kişinin elini tam uygun bir kuvvetle sıkıyorsunuz.

Bütün bu işleri eş zamanlı olarak yapabilmeniz, beynin "paralel bilgi işlem" yeteneği sayesinde mümkün olmaktadır. Beyin bunu her gün, uyanık geçirdiğiniz her an milyonlarca kez yapmaktadır ve siz, bu işlemler gerçekleşirken tüm bunların nasıl gerçekleştiği hakkında özel olarak düşünmezsiniz.

Üşüdüğünüz zaman ise, havanın soğuduğunu hissedersiniz ve vücudunuzun çeşitli organları bu değişimden etkilenir. Derinizdeki küçük gözeneklerin, kılcal damar uçlarının daralmasından, kaslarınızın titremesine kadar bir dizi faaliyet kendiliğinden devreye girip, ısı üretimini artırarak ya da kaybını azaltarak normal vücut ısısının korunmasına katkıda bulunurlar.69 Bu kadar farklı işlevi birbiriyle uyumlu olarak aynı anda harekete geçirecek bir merkezin var olması şarttır. Her bir faaliyetin ortak bir hedef doğrultusunda bütünleştirilmesi için, hepsinin üstünde yer alan bir kumanda merkezi bulunmalıdır. Bu merkez beynimizdir, ancak kitap boyunca vurguladığımız gibi, bu olağanüstü yetenek bir et parçasının kendi başarısı olamaz. Beynin, milyonlarca faaliyeti aynı anda, kusursuz bir koordinasyon içerisinde gerçekleştirebilmesi Allah'ın kusursuz yaratışı ile mümkün olmaktadır.

69. Hoimar Von Ditfurth, Dinozorların Sessiz Gecesi, cilt 4, İstanbul, 1998, ss. 23-24.

En Üstün Teknolojiden Daha İleri İşlem Kapasitesi

Beynimizdeki işlem kapasitesi, hiçbir bilgisayarın erişemediği üstün bir iletişimi ortaya çıkarır. İnsan beyninin işlem kapasitesinin 1.000 adet en gelişmiş bilgisayarın toplam işlem kapasitesine denk olduğu hesaplanmıştır:

İnsan beyninin sahip olduğu kapasitenin de günümüz teknolojisi ile karşılaştırıldığında, büyük bir üstünlüğe sahip olduğu görülmektedir. Örneğin dünyanın en hızlı işlem yapan bilgisayarları ortalama olarak saniyede 109 hızında hesap yapabilmektedir. Beynin hızı ise aynı işlem için 1015'tir. Dahası bilgisayar hafızasının kapasitesi 1011 bit'ken beyninki 1014'tür. Aradaki bu fark beynin kapasitesinin, 1.000 adet bilgisayarın toplam kapasitesi kadar olduğunu göstermektedir.65

Bu kıyaslama insan beyninin günümüz teknolojisinden ne kadar ileri olduğunu açık bir şekilde göstermektedir. Beyindeki tasarımın bu üstünlüğüne çarpıcı bir örnek de, ünlü bilgisayar firması IBM'in teknoloji müdürü Dr. Kerry Bernstein'ın bir projesidir. Kerry Bernstein, bir haber sitesinde yayınlanan "Brain Teaches Computers A Lesson" (Beyin Bilgisayarlara Ders Veriyor) başlıklı röportajda, IBM merkezinde her yıl düzenli olarak nörologların katılımıyla konferanslar düzenlediğini ve mühendislerini beyindeki tasarım konusunda bilgilendirdiğini ifade etmektedir. Bernstein beyindeki işleyişin aynen taklit edilmesinin mümkün olmadığını ise şöyle ifade etmektedir:

Beyinde olağanüstü bir paralellik hakim. Yani tek bir bit [bilgisayarın hafıza birimi] bilgi, bir anda tam 100.000 nörona yayılabiliyor. Böylece beyin, bilinen en hızlı bilgisayardan yüzbinlerce kat daha hızlı oluyor. Bizim ise bunu elektronikte gerçekleştirebilmemiz mümkün değil.66

Kısacası Dr. Kerry Bernstein beyni elektronik alanında taklit edebilmenin mümkün olmadığını belirtmektedir. Evrim teorisinin geçersizliğini ortaya koyan eserleri ile tanınan moleküler biyolog Prof. Michael Denton ise, en iyi mühendislerin, en komplike teknikleri kullansalar dahi beyne "biraz" benzeyen bir objeyi tasarlamalarının "sonsuz zaman alacağını" söylemektedir.67

Beyindeki üstün tasarımın yanı sıra beynin, verimli çalışmayı dikkate alan bir sistemi de bulunmaktadır. California (Berkeley) Üniversitesi'nde optometri (görme bozukluğunu ölçme) ve psikoloji profesörü olan Martin S. Banks beynin verimli çalışma özelliği ile ilgili şöyle söylemektedir:

Beyin, gerçek hayatta muhtemelen ihtiyaç duymayacağı bilgiyi korumak için fazladan enerji harcamama özelliği bakımından verimlidir.68

Bir bilgisayar, belli işlemleri gerçekleştirmek üzere düzenlenmiş elektronik parçalardan oluşur. Yapım aşamasını görmesek de, bilgisayarın bu amaca uygun olarak elektronik konusunda bilgi sahibi bir bilgisayar mühendisi tarafından tasarlandığı açıktır. Akıl sahibi hiçbir insan, parçaların gelişigüzel etkilerle birleşerek ortaya çıktığını iddia etmez. Beyin ise bilgisayardan çok daha büyük işlem kapasitesine sahip bir tasarım harikasıdır. Dolayısıyla biz bu tasarıma bakıp, beynin bir tasarımcısı olduğunu ve ilminin genişliğini kavrayabiliriz. İnsanın yaratılışının her aşaması Rabbimiz'in sonsuz ilminin bir örneğidir.


65. D. Meredith, Metamagical Themes, Basic Books, New York, 1985.
66. "Brain Teaches Computers A Lesson", MSNBC.com, 6 Ağustos 2002.
67. Michael Denton, Evolution: A Theory In Crisis, Burnett Books, Londra, 1985, s. 330.