Kusursuz İnşaatın Zaman Çizelgesi



Yumurtanın spermle döllenmesi, hücre zarındaki potansiyel elektriğin değişmesiyle başlar. Sperm hücresi ana rahminde yumurta ile birleşirken, tam o anda yumurtadaki iyon kanalları aktif hale gelir. Yumurta hücresinin zarındaki potansiyel elektriğin değişmesi sonucu, diğer sperm hücreleri içeriye giremezler. Vücudumuzdaki elektriksel denge daha yaratılışın ilk evresi olan döllenme sürecinde de çok büyük önem taşır.

Döllenmeden dokuz ay sonra, beynimizi oluşturacak nöronların çoğu uygun beyin bölgesine geçmek üzere çoğalmıştır. Hedefe vardıklarında, her bir nöron etkili bir şekilde köklerini aşağıya doğru uzatır ve sinirsel bir devre oluşturarak komşu nöronlarla iletişim kurmaya başlar.


Bir insan embriyosunda ilk belirginleşen kısım merkezi sinir sistemidir. Bu kısım daha sonra gelişerek beyni ve omuriliği meydana getirir. Döllenmeden sadece iki buçuk hafta sonra embriyo üzerinde hücrelerin kenardan içeri doğru hareket etmesi ile birlikte belli belirsiz bir çukur oluşur. Üçüncü haftaya gelindiğinde, bu çukur kapanarak sinir sistemine ait silindir bir tüp ortaya çıkarır. Embriyonun uzunluğu ise hala iki milimetreden daha azdır.

Üçüncü ya da dördüncü haftada kalp atmaya başlar, ancak bu beyinden ya da merkezi sinir sisteminden gelen uyarılar aracılığıyla olmaz. İleride kafayı oluşturacak olan, beynin hemen yanındaki bölgeden gelen uyarılar aracılığıyla atmaya başlar..

Otuz beşinci güne gelindiğinde, yetişkin bir insanda bilinçli düşüncenin merkezi kabul edilen beyin kabuğu (korteks) gözle görülebilir bir hal alır. Beyin yavaş yavaş büyümeye başlar; bu, yıllarca devam edecek olan bir sürecin başlangıcıdır. Beynin doğum anındaki kütlesi bir yetişkinin dörtte biri kadardır. Bu büyüklük kuşkusuz son derece hikmetlidir. Bu, bebeğin başının doğum anında geçebileceği büyüklüğün sınırıdır. Doğumdan sonraki altıncı ayda, bebeğin kafatası gerçek boyutunun yarısı kadar, ikinci yılın sonunda ise bir yetişkin kafasının dörtte üçü büyüklükte olur. Dördüncü yılda, insan beyni doğum sırasındakinin dört katı büyüklükte, yani 1.400 cm3 kadardır. Şuursuz hücreler yığınının, annenin vücudundan çıkabilmek için en fazla ne kadar büyümesi gerektiğini bilmesi, bunu kusursuzca ayarlaması elbette ki mümkün değildir. Buradaki şuurlu hareket, hücrelerin Rahman ve Rahim olan Allah'ın ilhamı ile hareket ettiklerinin göstergelerinden sadece biridir.


Sinir sisteminin oluşumu:

5. haftadan itibaren embriyonun üst bölümündeki hücreler, gövdenin orta hattının etrafında kalınlaşmaya başlar. Burada iki katman ve aralarında bir tüp oluşur. Bu dış bölümün, omuriliğin ve sinir liflerinin çıktığı beynin ilk halidir.

Embriyonun anne karnındaki gelişiminde 5. haftadan itibaren oluşan omurilikte, çok süratli bir şekilde saniyede 5.000 tane nöron üretilir.79 Bu bölgede daha sonra beyin oluşacaktır. Doğum anına kadar beyindeki nöronların sayısı yüz milyara ulaşır.80 Beyin hücrelerinin büyük kısmı embriyonun ilk beş ayında oluşur ve her biri doğumdan önce beyinde olmaları gereken yerde konumlarını almış olurlar. Büyük bir hızla oluşan hücreler bir süre sonra merkezi sinir sisteminin uzantılarını oluşturmak üzere, daha uzaklara göç etmeye başlarlar. Elbette ki "göç" eylemi şuursuz bir hücre için olağanüstü bir yetenektir. Bir hücrenin belli bir noktaya ilerleme ihtiyacı hissetmesi, bunun için yönünü belirlemesi, yolunu şaşırmadan bulması, gitmesi gereken yere geldiğinde ilerlemeyi durdurması son derece hayret ve hayranlık verici bir durumdur. Gözü ya da beyni olmayan yağ ve proteinden oluşan bir hücrenin kendi kendine göç etme kararı alması, üstelik bu hareketi için belli bir amaç taşıması mümkün değildir. Bu, Allah'ın üzerimizdeki hakimiyetinin bir göstergesi, ilminin detaylarının sayısız örneğinden yalnızca bir tanesidir.

Her bir nöronun, sinir sistemi içinde kendisi için ayrılmış olan hedef yerini tam olarak bulması şarttır. Bu yüzden genç nöronların yollarını bulabilmeleri için mutlaka bir rehbere ihtiyaçları vardır. Bu rehberler, omuriliğin ve beynin gelişme alanı arasında bir tür kablo şeklinde uzanan özel hücrelerdir. Nöronlar üretildikleri yerden çıkıp bu rehberlere tutunarak göç ederler ve kendileri için ayrılmış olan yerleri anlayarak, oraya yerleşirler. Hemen ardından ise uzantılar meydana getirerek diğer nöronlarla bağlantı kurarlar. Hücrelerin her biri hedefleri olan organa doğru hızla yol almaya başlar. Nöronlara bu seyahatleri boyunca, "gliyal hücre" denilen bir trilyon destek hücresi eşlik eder. Peki ama nöronlar oluşur oluşmaz böyle bir yolculuğa çıkacaklarını nereden bilmektedirler? Bu yolculuk sırasında hedeflerini bulmak için bir rehber kullanmaları gerektiğine ve birbirleriyle ne tür bir iş birliği yapacaklarına nasıl karar vermektedirler? Nöron dediğimiz varlıklar sonuçta gözle görülemeyecek küçüklükte, atomlardan ve moleküllerden oluşan hücrelerdir. Onların böylesine şuurlu bir şekilde yerleşmeleri kendi karar ve iradeleriyle gerçekleşecek bir olay değildir. Bu işlemi yöneten merkez beyin de değildir. Çünkü henüz anne karnındaki embriyonun beyni oluşmamıştır. Buradaki bilinçli davranışlar, şuurlu bir yaratılışı açıkça ispatlamaktadır.


İnsanın iletişimini sağlayan sinir sisteminin merkezindeki beyin bir insanın normal yaşantısına devam edebilmesi için doğduğu andan itibaren kusursuzca çalışır durumda olmalıdır. Bu nedenle yeni doğan bir çocuğun beynindeki nöron sayısı -aradaki bağlantıların çoğu tamamlanmamış olsa da- yetişkin birininki ile aynıdır. Ceninin gelişimi sırasında beyin günde yaklaşık 360 milyon kadar yeni hücre üretir.

Beyindeki hücrelerden bazılarının gliyal hücrelere dönüşmesi de son derece mucizevi bir durumdur. Bu hücreler, beyinde bol miktarda bulunurlar ve sayıca nöronlardan on kat fazladırlar. Gliyal hücrelerin bir türü "makrofaj" olarak bilinen ve beyinde meydana gelen bir hasardan sonra ölü hücre kalıntılarını temizlemekle görevli olan hücrelerdir. Diğer bir gliyal hücre sınıfı ise birçok nöronun etrafında, elektriksel yalıtım işlevini görecek yağlı bir tabaka oluşturur. Yıldızımsı şekli dolayısıyla astrosit diye adlandırılan ve her yerde bulunan bir gliyal hücre türü de nöronları korur. Bunlar, aşırı miktardaki toksik kimyasalları temizlemek için bir tür sünger ya da tampon işlevi görürler. Nöronlar fiilen hasar gördüklerinde, astrositler hasarın onarılmasını sağlayacak maddeleri yüksek düzeyde salgılayabilmek için, iki kat çaba harcayarak boyut ve sayı bakımından büyürler. Her biri birbirinden önemli olan bu görevleri, gözle görülmeyen boyuttaki söz konusu hücreler gerçekleştirir.

Yirminci haftaya gelindiğinde beyin korteksi (dış kısım, kabuk) ile bebeğin vücudu arasında sinirsel bağlantılar oluşur. Bundan sonraki beş hafta içinde de duyu sistemi ve beyin arasındaki bağlantılar tamamlanır.

Doğumdan sonraki ilk aylarda, beyindeki yalıtıcı miyelin maddesinde büyük bir artış görülür. Aksonlar miyelinle yalıtılır yalıtılmaz, elektrik sinyalini çok daha verimli bir şekilde taşımaya başlarlar. Hassas bir hareketi gerçekleştirebilmemiz, ancak beyindeki nöronların olabildiğince verimli çalışmasıyla gerçekleşir. Aksonların miyelinle yalıtılması on beş yaşına ve hatta daha ileri dönemlere kadar hızla devam eder.


Spermle yumurtanın birleşmesinde elektrik yükü büyük önem taşır. Yumurta her zaman için eksi elektrik yüküne sahiptir. Spermler ise artı elektrik yüklüdür. Zıt yükler birbirini çektiği için yumurta da tüm spermleri kendine doğru çeker. Ancak yumurtanın içine girebilen ilk spermle birlikte elektrik yükü anında değişir. Artık yumurta da spermler gibi artı elektrik yüküne sahiptir. Aynı yükler birbirini ittiği için birleşme anından itibaren yumurta tüm spermleri itmeye başlar. Eğer yumurta ve spermlerin elektrik yükleri en baştan zıt değil de eşit olsaydı, o zaman yumurta, spermleri iter ve hiçbir sperm yumurtaya yaklaşamazdı. Görüldüğü gibi, tek bir yumurta ile spermin birleşmesinde dahi olağanüstü bir denge ve hesap bulunmaktadır.

Sperm ve yumurta olarak ifade edilen iki mikroskobik hücrenin birleşiminden böylesine kompleks bir sinir ağı ve kumanda merkezi oluşması bir yaratılış harikasıdır. Hücreler oluşur oluşmaz bilmedikleri bir yere doğru sadece kendilerine ilham edilen bilgiler doğrultusunda hareket ederler. Açıktır ki, beynin ve sinir sisteminin oluşumu sırasında yaşanan hiçbir olayın tesadüflerle meydana gelmesi mümkün değildir. Çünkü tek bir aşamadaki aksaklık, zincirleme olarak tüm sistemi bozacaktır. Nöronların meydana gelmesi ve bir sinir ağına dönüşmeleri beynin ve ona bağlı çalışan sinir sisteminin oluşum aşamalarından yalnızca bir tanesidir. Değil evrimcilerin iddia ettiği gibi beynin tamamının tesadüfen oluşması, tek bir nöronun bile rastlantılarla meydana gelmesi mümkün değildir. Oxford Üniversitesi Farmakoloji profesörü Susan Greenfield insanın yaratılışındaki bu olağanüstülüğü şöyle dile getirmektedir:

Döllenmiş tek yumurtanın bilinçli olmadığı açıktır, o halde bilinç aniden ne zaman ortaya çıkar? Ve bir cenin nasıl bilinçli olabilir? O halde bilinci ortaya çıkaran doğumun kendisi midir? Bu düşünceyi kabul etmek oldukça zordur, çünkü beyin doğum sürecinden hiç etkilenmez... Bir yanda, bir nöronun beynin doğru bölgesine giden tek yönlü gliyal rayından ne zaman ineceğini nasıl bildiği ve belirli bir devre içinde ekip kuracağı benzer nöronları nasıl tanıdığı gibi, çözülmesi gereken çok sayıda soru; diğer yanda ise, tam bir muamma olarak kalan daha genel bilmeceler var. Gelişmekte olan beynin içinde, bireysellik hangi aşamada filizleniyor? Nöron devreleri bireysel bir beynin yanı sıra bireysel bir bilinci nasıl ortaya çıkarıyor? Bir cenin neyin bilincinde olabilir?82

Nöronları bu özelliklerle yaratan, gerektiği anda gerektiği şekle sokan, gidecekleri yerlere onları tek tek yerleştiren sonsuz ilim sahibi Rabbimiz'dir. Herkes -bu gerçek üzerinde düşünse de düşünmese de- burada çok genel anlamda değindiğimiz aşamalardan geçerek yaratılmıştır. Daha kendisi şuurunda değilken, ihtiyacı olan tüm sistemler kendisi için bedeninde yaratılmıştır. Üstelik bunların oluşumunun yanısıra düzenli bir sistem olarak çalışmaları ile ilgili de hiçbir sorumluluğu yoktur. Vücudumuzdaki bu mükemmel düzen Rabbimiz'in üzerimizdeki rahmetinin sayısız örneğinden sadece bir tanesidir.


79. Science Vie, Mart 1995, no. 190, s. 88.
80. Gerald L. Schroeder, Tanrının Saklı Yüzü, Gelenek Yayınları, çev: Ahmet Ergenç, İstanbul, 2003, s. 118

Benzer Sinyaller Birbirinden Çok Farklı Mesajları Nasıl Taşır?



Beynin Lisanı: Elektrik Sinyalleri
Işık, retinadaki bir hücreye çarptığında ya da ses dalgası kulaktaki bir alıcı hücreyi uyardığında alıcı hücre bu uyarıyı elektrik sinyallerine -beynin lisanına- döndürür. Bu dönüşüm ya da tercüme çok hızlı, kusursuz ve bilim adamlarını cevapsız bırakacak düzeyde komplekstir.

Buraya kadar duyu organlarımızın işleyişini ve bazı mucizevi özelliklerini aktardık. Tüm duyu organlarımızdaki ortak yön, dışarıdan aldıkları uyarıcıları elektrik sinyallerine dönüştürerek beyindeki ilgili duyu merkezine aktarmalarıydı. İşte bu noktada çok şaşırtıcı bir gerçek karşımıza çıkar: Beynin duyu organlarından aldığı mesajların tümü aynı tür uyarılardan meydana gelmektedir. Beynin çeşitli merkezlerine ulaştırılan bu uyarıların hepsi elektrik akımları şeklindedir. Birbirinin aynı olan elektriksel akımların, birbirinden çok farklı bilgiler içermesi ve beynin farklı merkezlerinde farklı etkilere sebep olması son derece hayret verici bir durumdur. Susan Greenfield İnsan ve Beynimiz adlı kitabında bu olağanüstü duruma şöyle dikkat çekmiştir:

Görsel kortekse gelen elektrik sinyalleri görme olarak algılanırken, beynin somatik-duyusal korteks ya da işitme korteksi gibi farklı bir bölümüne gelen tamamen aynı türden elektrik sinyallerinin neden dokunma ve duyma olarak algılandığı, beynin bir diğer şaşırtıcı ve gizemli yönüdür.77

Greenfield'in "gizemli" olarak ifade ettiği gerçek, aslında son derece açıktır: Duyu organlarımızın işleyişi, bedenimizin tüm diğer fonksiyonları gibi kusursuz bir yaratılışla var edilmiştir. Yüce Rabbimiz aynı kara topraktan birbirinden çok farklı renklerde, tatlarda, kokularda bitkiler, meyveler çıkardığı gibi, birbiriyle aynı elektrik sinyallerinin beynimizde birbirinden tamamen farklı şekillerde algılanmasını sağlamaktadır. Bu sayede dış dünyadaki renkleri, kokuları, tatları kusursuz şekilde hissedebilmekteyiz.

77. Susan Greenfield, İnsan Beyni, Varlık Bilim, 2000, s.61.

Denge ve hareket


Aralıksız yer çekimi olmasına rağmen nasıl ayakta durabiliyorsunuz? Düşmeden kendi etrafınızda aniden nasıl dönebiliyorsunuz? İç kulağın girişindeki organlar, kafanın hareketi ve pozisyonu hakkında beyne bilgi yollayarak dengenin elde edilmesine yardımcı olurlar. Kafanın hareketi kanallardaki sıvının hareket etmesine ve tüycüklerin eğilmesine sebep olur; eğilen tüycükler beyne doğru giden mesajları başlatırlar. Kanalları oluşturan üç düzlem birbirlerine dik olarak yerleşmiştir, bu yüzden de farklı hareketlere ayrı tepki verirler. Bir tanesi aşağı yukarı harekete çok hassastır, bir tanesi yanlara doğru olan harekete ve diğeri de eğilme hareketine hassastır.

Aralıksız yer çekimi olmasına rağmen nasıl ayakta durabiliyorsunuz? Düşmeden kendi etrafınızda aniden nasıl dönebiliyorsunuz?

İç kulağın girişindeki organlar, kafanın hareketi ve pozisyonu hakkında beyne bilgi yollayarak dengenin elde edilmesine yardımcı olurlar. Başın hareketi kanallardaki sıvının hareket etmesine ve tüycüklerin eğilmesine sebep olur; eğilen tüycükler beyne doğru giden mesajları başlatırlar. Ancak bu kanaldaki dokular farklı hareketlere ayrı tepki verirler. Bir tanesi aşağı yukarı harekete çok hassastır, bir tanesi yanlara doğru olan harekete ve diğeri de eğilme hareketine hassastır.

İç kulağımızın içinde "vestibüler sistem" adı verilen özel bir mekanizma vardır. Dengemizi sağlamamıza yardım eden bu sistem hangi yöne hareket ettiğimizi de bildirir. Vestibüler sistem "yarım daire kanalları" adı verilen ve özel bir sıvıyla dolu üç tünelden oluşur. Her kanalda tüylerle kaplı birer bölge bulunur. Bu tüyler alıcı hücrelerdir ve hareket ettiğimiz zaman kanallardaki sıvı, tüylerin üzerinden akarak onları büker. Bu bükülme beyne gönderilen elektrik sinyallerine dönüştürülür. Beynimiz bu sinyalleri çözümleyerek o sırada ne yaptığımızı ve konumumuzu bilir.

Kimi zaman dengenizi kaybetmenizin sebebi iç kulakta yaşanan sarsıntıdır. Başınızı eğdiğinizde ya da sağa sola çevirdiğinizde bu kanallardaki tüyler eğilmeye başlar, tüylerdeki bu durum bu tüylerin başın ve kanalın hareketlerine oranla saniyenin küçük bir yüzdesinde harekete geçmesine neden olur. Tüylerin harekete geçmesiyle birlikte her bir tüyün tabanında var olan sinirlerde gerçekleşen kimyasal reaksiyonlar sonucunda, bilgiyi duyu sistemine aktaran elektrokimyasal sinyaller üretilir. Daha sonra da beyin, bu sinyalleri vücudun duruşuna ilişkin bilgiyle -bacak eklemlerinin açısı, görüntümüzle ilgili sinyaller, kaslardaki kasılmalar gibi- birleştirerek vücutta gerçekleşen sendelemeyi fark eder.

Kulaktaki bu sistem gözlerdeki, boyundaki, kaslardaki ve bağlardaki sinir alıcıları ile beraber çalışır; bunların hiçbiri tek başına insanı dengede tutmak için yeterli değildir. Durmakta olan bir trenin penceresinden dışarı bakıp, bir başka trenin uzaklaştığını gördüğünüzde, gözleriniz sanki hareket ediyormuşsunuz gibi bilgi verecektir. Ancak vücudunuzdaki diğer sinir alıcıları size bunun aksini bildirerek, çevreyi doğru algılamanızı sağlar. Böylece sizin sabit, diğer trenin hareket halinde olduğunu anlarsınız.

Elbette ki burada "beyin bu verileri birleştirir" diyerek kısaca tanımladığımız işlem, aslında her bir hücrenin ve bir milyardan fazla aksonun sinyal aktarımındaki kusursuz iletişim ağı neticesinde gerçekleşmektedir. Vücudumuzun denge mekanizması bilinçli bir yaratılışın ürünüdür.

Elektrik Sinyallerinin Ses Olarak Yorumlanması ve İşitme Algısı


Dış kulak, çevredeki ses dalgalarını kulak kepçesi ile toplayıp orta kulağa iletir. Orta kulak ise aldığı ses titreşimlerini güçlendirerek iç kulağa aktarır. İç kulak da bu titreşimleri sesin yoğunluğuna ve sıklığına göre elektrik sinyallerine dönüştürerek beyne gönderir. Beyinde birkaç yere uğradıktan sonra mesajlar, son olarak bu sinyallerin işleme koyulup yorumlandığı duyma merkezine iletilirler. Böylece duyma işlemi de beyindeki duyma merkezinde gerçekleşir.

İşitme algısındaki en şaşırtıcı özelliklerden biri kulakta yer alan kanallardaki 20.000 tüyün tepki verme hızıdır. Orta kanal, saniyede 256 devirle titreşir. Orta kulağın hemen üstündeki kanal, saniyede 512 devirle ve bunun üstündeki kanal da, saniyede 1.024 devirle titreşir. Tüylerin böylesine yüksek titreşimleri yorumlamaya elverişli yapısı, müzikteki notalar arasında hassasiyetle ayrım yapabilmemezi sağlar. Bu, bedenimizdeki en hassas ve en hızlı tepki sistemlerinden birini oluşturur.

Beynin kulaktan gelen ses titreşimlerini çözümlerken, sesi -konuşmacının konuşma hızından, yüksekliğinden veya aksanından etkilenmeden- kelimelere, bu kelimeleri de cümle parçalarına çevirmesi gerekir. Çoğu zaman kafamızın içerisindeki hayranlık uyandıran bu yorumlama sisteminin hiç farkında olmayız. Kulaktaki kompleks tasarım bilim adamlarının sık sık övgülerini dile getirmelerine sebep olmuştur. Bunlardan biri şöyledir:

Mühendislik harikası. İnsan vücudunda yer alan organlardan sadece birkaç tanesi, kulak gibi küçücük bir alanda, çok fazla şeyi başarmaktadır. Eğer bir mühendisin kulağın işlevini taklit etmesi gerekse, yaklaşık 16 cm3'lük bir alana bir ses sistemi sığdırması gerekirdi. Sözü edilen bu ses sisteminde ... geniş çaplı bir mekanik çözümleyici, naklen yayınlayıcı ve ses yükseltme birimi, mekanik enerjiyi elektrik enerjisine dönüştüren çok kanallı bir sistem, hassas bir hidrolik denge sağlama sistemi bulunması gerekecekti. Bu minyatürleştirme mucizesini gerçekleştirebilse bile, büyük olasılıkla kulağın performansına eşit olmasını umut edemezdi. Kulak, menzilinin bir ucunda bir sis düdüğünün alçak sesini, diğer bir ucunda da bir jet motorunun keskin bağırtısını duymaya göre kendini ayarlayabilir. Bu organ, kemanla çalınan bir müzik ile bir senfoni orkestrasındaki viyolayla çalınan bölümler arasındaki ince ayrımı yapabilir... Hatta uyku sırasındayken bile kulak inanılmaz bir etkinlikle işlevlerini yerine getirir. Çünkü beyin, kulak yoluyla kendisine iletilen sinyalleri yorumlayabilir ve seçebilir. Bir insan gürültülü bir trafikte veya komşusunun televizyonunun yüksek sesiyle de uyuyabilir, sonra da alarmlı bir saatin yumuşak sesiyle ise hemen uyanabilir.75


Titreşen hava moleküllerinden oluşan ses dalgaları kulak zarını etkiler. Zarda oluşan titreşimler üç küçük kemikten meydana gelen bir mekanizmayı harekete geçirir. Bu mekanizma başka bir zarı harekete geçirerek, titreşimleri tüylerle kaplı olan sıvı dolu kanallara aktarır. Kanaldaki tüycükler ses dalgalarındaki basınç farklılıklarına tepki göstererek, birtakım sinyallerin oluşmasını sağlarlar. Bu sinyaller, Rabbimiz�n rahmetiyle beyinde bir şarkının melodisi, rüzgarın sesi, kapı zili gibi büyük bir hassasiyetle yorumlanır.

Kulak aynı zamanda algıda seçiciliğe sahiptir. Kulağın bu özelliğini anlamak için gece vakti bir çocuğun ağlama sesini duyduğunuzda olanları düşünebiliriz. Ses sinyali beynin ilgili bölgesine gönderilir ve burada adım adım deşifre edilir. Ne tür bir ses olduğu, kime ait olduğu gibi bilgiler tespit edilir. Uzun süreli bir hafızaya sahip olduğunuz için bu ses size tanıdık gelir ve bunun çocuklarınızdan birine ait olduğunu anlarsınız. Bu bilgi ile beraber beyniniz artık çocuğunuzun yardım istediğini bilir ve bir acil durum yaşandığının sinyalini gönderir. Buna bağlı olarak, vücudu harekete geçirmek için adrenalin akışının sağlanması gibi hazırlayıcı reaksiyonlar gerçekleşir. Tüm bunlar hareketsiz bedeninizi hareket için teşvik eder ve siz, çocuğun yatağına doğru harekete geçersiniz. Ayrıca size çocuğun yatağının nerede olduğunu söyleyen hafızanız devreye girer. Son derece sade olarak aktardığımız bu algı ve hareketler zinciri, mucizevi biyokimyasal, biyoelektriksel işlemler içerir. Bütün bunlar her biri binlerce terminale sahip olan yüz binlerce aksonun bir katrilyon (1.000.000.000.000.000) lifle karşılıklı bağlantıya geçmesi sonucunda gerçekleşir. Beyniniz sinyalleri deşifre etmek için analizler yaparken, siz bunun hiç farkına varmazsınız. Peki tüm bunları algılayan bir et yığını olabilir mi? İşte bu soru ön yargısız bilim adamlarını da düşünmeye sevk etmektedir. Bunlardan biri olan Gerald L. Schroeder işitme algısı ile ilgili şunları sorgulamaktadır:

Ve sırada zor sorunun zor kısmı var: Müzik sesi. Ses dalgaları, kulak zarına çarparak ... beyin korteksinde kimyasal olarak depolanmış biyoelektrik sinyallere dönüşür. Fakat sesi nasıl duyabiliyorum? Beyinde depolanmış bilgi de dahil olmak üzere buraya kadar olay tamamıyla biyokimyasaldır. Ne var ki ben biyokimyayı duymam. Sesi duyarım. Kafamın içinde bu ses nerede oluşuyor? Veya görüntü; ya da koku? Bilinç nerededir? Karbon, hidrojen, nitrojen, oksijen vb. gibi maddelerden hangisinin durağan atomları, kafamın içerisinde bir düşünce üretebilecek ya da bir şekil yaratabilecek kadar akıllı hale gelebilir ki? Bu saklı biyokimyasal bilgi kodlarının nasıl hatırlandığı ve bilinçte tekrar nasıl canlandırıldığı bir muamma olarak kalmaya devam etmektedir.76

Schroeder'in "bir muamma" tanımlaması yanlıştır. Elbette dış dünyayı algılayan bir et parçası olan beyin değil, Allah'ın insana vermiş olduğu Ruh'tur.

76. Gerald L. Schroeder, Tanrının Saklı Yüzü, Gelenek Yayınları, çev: Ahmet Ergenç, İstanbul, 2003, s. 20.

Elektrik Sinyallerinin Tat Olarak Algılanması


Tat alma sistemimiz, proteinleri, iyonları, kompleks molekülleri ve pek çok kimyasal bileşiği analiz eder; bir ömür boyu durup dinlenmeksizin bizim adımıza çalışır. Dil, adeta karmaşık kimyasal analizler yapan bir laboratuvar gibi faaliyet gösterir. Yediğimiz veya içtiğimiz her besin çok sayıda farklı tat molekülünden oluşur. Herhangi bir tabak yemekte, yüzlerce veya binlerce ayrı kimyasal madde bulunur. Dilimizdeki tat alıcıları da bu farklı molekülleri kusursuz bir doğrulukla tahlil ederler.


Herhangi bir tabak yemekte, yüzlerce hatta binlerce ayrı kimyasal madde bulunur. Dil, gelişmiş bir laboratuvar gibi, kimyasal yapıları farklı sayısız molekülü şaşmaz bir doğrulukla tahlil eder. Yiyeceklerdeki moleküllere ait bilgileri, dilin üzerindeki tat alıcıları bir elektrik sinyali olarak beynin ilgili merkezine gönderir. Yediğimiz bir portakalın ya da bir çileğin lezzeti, Rabbimiz'in beynimizde oluşturduğu elektriksel sinyallerin bir yorumundan ibarettir.

Yukarıda alttaki küçük resimde dile pürüzlü görünümünü veren papillanın 60 kat büyütülmüş hali görülmektedir. Papillaları oluşturan tat tomurcukları, tüm dilde 10 bin kadardır. Tat tomurcuklarının her birinde ise 50 kadar tat hücresi bulunur.

Dilimizde bu analizin gerçekleşmesi için son derece özel bir tasarım vardır. Vücudumuzun başka hiçbir yerinde değil, sadece besinlerin sindirimine başladığımız ilk aşamada -dilimizde- tat alma konusunda uzmanlaşmış hücreler yer alır. Bu hücreler besinlerin analizini yaparak, bunlarla ilgili bilgileri beyine elektrik sinyali olarak ulaştırırlar. Dilden beyne ulaşan bu elektrik sinyallerinin lezzet olarak yorumlanması ise yine beynimiz tarafından gerçekleştirilir.

Tat alma sistemimizdeki hücrelerin, tam olması gereken sayıda, yerde ve en ideal şekilde bulunmaları da üstün bir yaratılış örneğidir. Elektrik sinyallerini yorumlayan beynimizin, bize ne yediğimizi söylemesi, her seferinde hatasız olarak yediklerimizi ayırt etmesi, üstelik bunların kimyasal analizini yaparak ekşi mi, acı mı, tatlı mı olduklarını bildirmesi vücudumuzdaki yaratılış mucizelerinden biridir.

Koku Moleküllerinin Elektrik Sinyaline Çevrilmesi


Koku algımızın işleyişi de diğer duyu organlarımızın işleyişine benzer. Aslında burnumuzun dışarıdan görünen bölümünün görevi sadece bir kanal gibi, havadaki koku moleküllerini içeri almaktır. Vanilya veya gül kokusu gibi uçucu moleküller, burnun epitelyum denilen bölgesindeki titrek tüylerde bulunan alıcılara gelir ve bu alıcılarda etkileşime girerler. Koku moleküllerinin epitelyum bölgesinde yaptıkları etkileşim, beynimize elektrik sinyali olarak ulaşır. Bu elektrik sinyalleri ise beynimizde koku olarak algılanır.

Koku moleküllerinin yaptığı etkinin elektrik enerjisine dönüştürülmesinde hayranlık verici bir sistem işler. Burundaki hassas zar üzerinde 50 milyon kadar sinir hücresi bulunmaktadır. Her bir sinir hücresi pek çok protein içerir. Bir koku molekülü, şekli uyduğu sürece bu sinir hücrelerindeki protein moleküllerinden birine tutunabilir. Böylelikle bu bölgede elektriksel olarak bir kutuplaşma meydana gelir. Bu kutuplaşma elektrik enerjisi meydana getirir ve algılanan kokuya ait elektrik sinyalleri, alnın hemen altındaki koku alma bölgesine ulaşır. Burada farklı hücrelerden gelen bilgiler değerlendirilir ve çeşitli beyin yapılarına gönderilerek, "koku"nun kaynağı belirlenir.


Burnun üst bölümünde çok sayıda sinir hücresi içeren ve �oku epiteli�olarak adlandırılan iki küçük alan bulunur. Bu bölgeler koku algısından sorumludur. Koku ise havada molekül olarak dolaşır. Nefes alırken havadaki oksijenin yanı sıra bu moleküller de burna girerler. Havayla taşınan �oku molekülleri�burundaki alıcılara ulaştığında burada bulunan hücreler uyarılır. Uyarılan hücre, beyne bir elektrik sinyali gönderir. Beyin koku molekülü ile değil, yalnızca kendisine ulaşan elektrik sinyali ile muhatap olur. Beynin elektrik sinyaliyle ilgili yaptığı yorumu insan koku olarak algılar.

Taze ekmeğin, bahçedeki güllerin, yeni biçilmiş çimenlerin, yağmurdan sonraki toprağın, sıcak çorbanın, çileğin, şeftalinin, maydanozun, kullandığınız sabunun, şampuanın kokusunu ve buna benzer daha pek çok kokuyu duyabilmenizi burnunuzdaki hassas yapıya borçlusunuz. Pek çok insan gün içinde ne kadar çok koku duyduğunu ve bu kokular sayesinde cisimlerin şeklinin zihninde nasıl belirdiğini hiç düşünmez. Oysa yediğiniz yemeğin lezzet kazanmasını sağlayan, koku alma duyunuzdur. Koku, cisimleri tanımanızdaki önemli etkenlerden bir tanesidir.

Aldığınız her nefesle birlikte cisimlere ait kokular da burundan içeriye girer. İnsan burnu duyduğu bir kokuyu 30 saniye içinde analiz edecek ve yaklaşık 3.000 değişik kokuyu birbirinden ayırt edebilecek müthiş bir kapasiteye sahiptir.74


74. John Farndon, Angela Koo, Human Body Factfinder, s. 188.

Beyinde Oluşan Üç Boyutlu Dünya

Beyin, nesnelerin uzaklıklarının tespit edilmesinde de son derece hassastır. Her iki göz aynı anda hareket etmelerine karşın, farklı açılarda görüntü elde ederler. Gözlerin açıları arasındaki bu farklılıklar ise beynin, görülen nesnenin ne kadar uzakta olduğunu hesaplamasına yardımcı olur. Beyne iletilen iki görüntü kıyaslanır ve görüntünün derinliği belirlenir; böylece siz de elinizdeki kitabı üç boyutlu bir görüntü içinde görürsünüz. Eğer bu özellik olmasaydı, herşeyi çift ve tek bir düzlem üzerinde görürdük. Bu bakımdan iki gözün görüş alanlarının farklı açılarda olması son derece hikmetli bir yaratılış örneğidir.

Bir tenis maçı izlediğinizi düşünelim. Oyunculardan biri, ağın üzerinden geçen topa raketiyle karşılık veriyor. Beyniniz size vuruşun nasıl olduğu hakkında kanaat belirtiyor. Topu, ağı ve raketi aydınlatan ışık, siz farkında olmadan eş zamanlı bir şekilde gözlerinize ulaşıyor. Bir raket ya da bir tenis topu olarak algıladığınız şey, beyninizde çok sayıda elektriksel sinyalin iş birliği yapmasından oluşan bir görüntüdür ve her bir sinyal beyindeki ilgili kısma yöneltilir. Ancak beyninizde, bu tenis maçını nasıl gördüğünüze ilişkin herhangi bir ipucu yoktur. Bilim adamları görüntü, ses ya da koku verilerinin beynin ilgili kısımlarına nasıl yansıtıldığını açıklamaktadırlar, ancak onları asıl şaşkınlık içinde bırakan bu elektrik sinyallerinin yeniden, orijinaline uygun olarak beyinde nasıl düzenlendiğidir.

Gerald L. Schroeder görme olayındaki mucizevi yönlerden birkaçını şu ifadelerle dile getirmektedir:

Biyolojik bilgi transferi süreci hayranlık verici bir hikayedir. Sadece bu olaylar zincirinin tek bir parçasını ele almak istersek, beyin gözdeki retinaya yansıtılan iki boyutlu görüntünün üç boyutlu bir dünyayı temsil ettiğini nereden bilir? Çünkü görüntü bir dizi elektriksel uyarıya dönüştürülür ve bunların her biri... voltaj farklarıdır... Bu aklı nereden almıştır?73 Schroeder'in de vurguladığı gibi, elektriksel uyarıların bilgiyi şifreli olarak taşıması, sonra bunların maddesel dünyadakinin aynısı olarak beynimizde yorumlanması, üstün bir aklın ürünüdür. Yazarın "Bu aklı nereden almıştır?" ifadesi ile dikkat çektiği aklın gerçek sahibi ise, kuşkusuz hepimizi yaratan, görmemiz için gözler veren Rabbimiz'dir.

73. Gerald L. Schroeder, The Hidden Face of God: How Science Reveals the Ultimate Truth, The Free Press, New York, 2001, s. 92